Possibility of massless Dirac fermions in an Aubry–André–Harper potential

  1. Cruz-Méndez, M. 1
  2. Cruz, H. 2
  1. 1 Escuela Politécnica Superior, Universidad Francisco de Vitoria 1 , Ctra. Pozuelo-Majadahonda Km. 1.800, 28223 Pozuelo de Alarcón, Madrid, Spain
  2. 2 Departamento de Física, IUDEA, Universidad de La Laguna 2 , Avda. Astrofísico Francisco Sánchez s/n, 38204 La Laguna, Tenerife, Spain
Revista:
APL Quantum

ISSN: 2835-0103

Año de publicación: 2024

Volumen: 1

Número: 1

Tipo: Artículo

DOI: 10.1063/5.0191081 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: APL Quantum

Resumen

In this study, we present a one-dimensional tight-binding model designed to explore the impact of electric fields on an incommensurate quantumsystem.WespecificallyfocusontheAubry–André–Harpermodel,aquasiperiodicmodelknowntoexhibitametal–insulatortransitionat a critical potential value of λc = 2. This model combines Anderson and Aubry–André–Harper localization phenomena in a quantum system, leading to intriguing effects on the lattice band structure upon the application of an electric field F to the Aubry–André–Harper potential. Ourinvestigation reveals that by choosing a specific value for the applied electric field, it becomes feasible to generate effective massless Dirac fermions within our Aubry–André–Harpersystem.Furthermore,wenotethattheextensionorlocalization of the massless particle wave function is contingent upon the potential strength value λ within our incommensurate model. Importantly, our findings highlight the potential for detecting this intriguing phenomenon through experimental means.

Referencias bibliográficas

  • (1958), Phys. Rev., 109, pp. 1492, 10.1103/PhysRev.109.1492
  • (2008), Nature, 453, pp. 895, 10.1038/nature07071
  • (1980), Ann. Isr. Phys. Soc., 3, pp. 133
  • (1955), Proc. Phys. Soc. A, 68, pp. 874, 10.1088/0370-1298/68/10/304
  • (2019), Eur. J. Phys., 40, pp. 045403, 10.1088/1361-6404/ab1670
  • (2023), Phys. Rev. B, 107, pp. 035120, 10.1103/PhysRevB.107.035120
  • (2008), Nature, 453, pp. 891, 10.1038/nature07000
  • (2011), Science, 334, pp. 66, 10.1126/science.1209019
  • (2023), Phys. Rev. B, 107, pp. 035129, 10.1103/PhysRevB.107.035129
  • (2019), Phys. Rev. B, 99, pp. 224204, 10.1103/PhysRevB.99.224204
  • (2022), Phys. Rev. Lett., 128, pp. 146601, 10.1103/PhysRevLett.128.146601
  • (2001), Phys. Rev. A, 64, pp. 033416, 10.1103/PhysRevA.64.033416
  • (2019), Phys. Rev. Res., 1, pp. 032039(R), 10.1103/PhysRevResearch.1.032039
  • (2018), Phys. Rev. E, 97, pp. 010101(R), 10.1103/PhysRevE.97.010101
  • (2018), Phys. Rev. A, 98, pp. 053631, 10.1103/PhysRevA.98.053631
  • (2023), Phys. Lett. A, 490, pp. 129193, 10.1016/j.physleta.2023.129193
  • (2023), Phys. Rev. B, 107, pp. 045407, 10.1103/Phys.Rev.B.107.045407
  • (2023), Physica B, 650, pp. 414500, 10.1016/jphysb.2022.414500
  • (2019), Phys. Rev. B, 100, pp. 235441, 10.1103/PhysRevB.100.235441
  • (2021), Phys. Rev. B, 103, pp. 045304, 10.1103/PhysRevB.103.045304
  • (2019), Phys. Rev. Lett., 122, pp. 105901, 10.1103/PhysRevLett.122.105901
  • (2023), Physica E, 153, pp. 115779, 10.1016/j.physe.2023.115779
  • (2006), Nat. Phys., 2, pp. 620, 10.1038/nphys384
  • (2009), Nat. Phys., 5, pp. 222, 10.1038/nphys1198
  • (2009), Phys. Rev. Lett., 102, pp. 026807, 10.1103/PhysRevLett.102.026807
  • (2006), Phys. Rev. B, 74, pp. 041403(R), 10.1103/PhysRevB.74.041403
  • (2006), Phys. Rev. B, 74, pp. 045424, 10.1103/PhysRevB.74.045424
  • (2007), Science, 315, pp. 1252, 10.1126/science.1138020
  • (2013), Phys. Rev. Lett., 111, pp. 066803, 10.1103/PhysRevLett.111.066803
  • (2015), Nat. Phys., 11, pp. 925, 10.1038/nphys3460
  • (1929), Z. Phys. A: Hadrons Nucl., 53, pp. 157, 10.1007/BF01400205
  • (2008), Phys. Rev. B, 77, pp. 245426, 10.1103/PhysRevB.77.245426
  • (2008), Phys. Rev. B, 77, pp. 115423, 10.1103/PhysRevB.77.115423
  • (2014), Phys. Rev. B, 90, pp. 235402, 10.1103/PhysRevB.90.235402
  • (2009), Phys. Rev. Lett., 102, pp. 226803, 10.1103/PhysRevLett.102.226803
  • (2011), Phys. Rev. B, 84, pp. 155437, 10.1103/PhysRevB.84.155437
  • (2015), Science, 348, pp. 672, 10.1126/science.aaa7469
  • (2016), Nat. Phys., 12, pp. 1032, 10.1038/nphys3805
  • (2016), Nat. Phys., 12, pp. 1069, 10.1038/nphys3806
  • (2017), Phys. Rev. B, 95, pp. 201406(R), 10.1103/PhysRevB.95.201406
  • (1993), J. Phys. I France, 3, pp. 1515, 10.1051/jp1:1993197
  • (2018), Acta Phys. Pol., A, 133, pp. 1347, 10.12693/APhysPolA.133.1347
  • (2020), Acta Phys. Pol., A, 138, pp. 21, 10.12693/APhysPolA.138.21
  • (2007), Phys. Rev. A, 75, pp. 063404, 10.1103/PhysRevA.75.063404
  • (2011), Phys. Rev. A, 84, pp. 033601, 10.1103/PhysRevA.84.033601
  • (2004), Phys. Rev. B, 70, pp. 195315, 10.1103/PhysRevB.70.195315
  • (2002), Phys. Rev. B, 65, pp. 245313, 10.1103/PhysRevB.65.245313
  • (1999), Phys. Rev. B, 59, pp. 9787, 10.1103/PhysRevB.59.9787
  • (2023), npj Quantum Inf., 9, pp. 40, 10.1038/s41534-023-00712-w