Luminescent Ln3+-based silsesquioxanes with a β-diketonate antenna ligand: toward the design of efficient temperature sensors

  1. Félix, Gautier
  2. Kulakova, Alena N.
  3. Sene, Saad
  4. Khrustalev, Victor N.
  5. Hernández-Rodríguez, Miguel A. 1
  6. Shubina, Elena S.
  7. Pelluau, Tristan
  8. Carlos, Luís D.
  9. Guari, Yannick
  10. Carneiro Neto, Albano N.
  11. Bilyachenko, Alexey N.
  12. Larionova, Joulia
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Frontiers in Chemistry

ISSN: 2296-2646

Año de publicación: 2024

Volumen: 12

Tipo: Artículo

DOI: 10.3389/FCHEM.2024.1379587 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Frontiers in Chemistry

Resumen

We report the synthesis and single-crystal X-ray diffraction, magnetic, and luminescence measurements of a novel family of luminescent cage-like tetranuclear silsesquioxanes (PhSiO1.5)8(LnO1.5)4(O)(C5H8O2)6(EtOH)2(CH3CN)2⋅2CH3CN (where Ln = Tb, 1; Tb/Eu, 2; and Gd, 3), featuring seven-coordinated lanthanide ions arranged in a one-capped trigonal prism geometry. Compounds 1 and 2 exhibit characteristic Tb3+ and Tb3+/Eu3+-related emissions, respectively, sensitized by the chelating antenna acetylacetonate (acac) ligands upon excitation in the UV and visible spectral regions. Compound 3 is used to assess the energies of the triplet states of the acac ligand. For compound 1, theoretical calculations on the intramolecular energy transfer and multiphonon rates indicate a thermal balance between the 5D4 Stark components, while the mixed Tb3+/Eu3+ analog 2, with a Tb:Eu ratio of 3:1, showcases intra-cluster Tb3+-to-Eu3+ energy transfer, calculated theoretically as a function of temperature. By utilizing the intensity ratio between the 5D4→7F5 (Tb3+) and 5D0→7F2 (Eu3+) transitions in the range 11–373 K, we demonstrate the realization of a ratiometric luminescent thermometer with compound 2, operating in the range 11–373 K with a maximum relative sensitivity of 2.0% K−1 at 373 K. These findings highlight the potential of cage-like silsesquioxanes as versatile materials for optical sensing-enabled applications.

Referencias bibliográficas

  • Alaoui, (1995), J. Phys. Chem., 99, pp. 13280, 10.1021/j100035a036
  • Allison, (2019), Meas. Sci. Technol., 30, pp. 072001, 10.1088/1361-6501/ab1d02
  • Annand, (1999), Inorg. Chem., 38, pp. 3941, 10.1021/ic990208p
  • Annand, (2000), J. Chem. Soc. Dalton Trans., pp. 1867, 10.1039/b000659i
  • Aquino Le do, (2021), Inorg. Chem., 60, pp. 892, 10.1021/acs.inorgchem.0c03020
  • Arnold, (2001), J. Chem. Soc. Dalton Trans., pp. 488, 10.1039/b009123p
  • Aulsebrook, (2018), Coord. Chem. Rev., 375, pp. 191, 10.1016/j.ccr.2017.11.018
  • Bednarkiewicz, (2020), Nanoscale., 12, pp. 14405, 10.1039/d0nr03568h
  • Bernot, (2021), Acc. Chem. Res., 54, pp. 427, 10.1021/acs.accounts.0c00684
  • Bettinelli, (2015), Phys. Today., 68, pp. 38, 10.1063/pt.3.2913
  • Bodman, (2021), Chem. Sci., 12, pp. 2716, 10.1039/d0sc05419d
  • Brites, (2019), Adv. Opt. Mater., 7, pp. 1801239, 10.1002/adom.201801239
  • Brites, (2010), Adv. Mater., 22, pp. 4499, 10.1002/adma.201001780
  • Brites, (2012), Nanoscale, 4, pp. 4799, 10.1039/c2nr30663h
  • Brites, (2023), Adv. Mater., 35, pp. 2302749, 10.1002/adma.202302749
  • Brites, (2016), Handbook on the physics and chemistry of rare earths, pp. 339
  • Bünzli, (2010), Chem. Rev., 110, pp. 2729, 10.1021/cr900362e
  • Bünzli, (2015), Coord. Chem. Rev., pp. 19, 10.1016/j.ccr.2014.10.013
  • Bünzli, (2019), TRECHEM., 1, pp. 751, 10.1016/j.trechm.2019.05.012
  • Bünzli, (2013), Chem. Sci., 4, pp. 1939, 10.1039/c3sc22126a
  • Calado, (2023), Chem. Commun., 59, pp. 13715, 10.1039/d3cc03658h
  • Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3 CarnallW. T. CrosswhiteH. CrosswhiteH. M. 1978
  • Carneiro Neto, (2022), J. Luminescence., 248, pp. 118933, 10.1016/j.jlumin.2022.118933
  • Carneiro Neto, (2020), J. Phys. Chem. C, 124, pp. 10105, 10.1021/acs.jpcc.0c00759
  • Carneiro Neto, (2019), Handbook on the physics and chemistry of rare earths, pp. 55
  • Choi, (2017), Smart Mater Struct. août, 26, pp. 093001, 10.1088/1361-665x/aa7c32
  • Costa, (2024), Coord. Chem. Rev., 502, pp. 215590, 10.1016/j.ccr.2023.215590
  • Cui, (2012), J. Am. Chem. Soc., 134, pp. 3979, 10.1021/ja2108036
  • Davies, (2017), Sci. Rep., 7, pp. 45862, 10.1038/srep45862
  • de Sá, (2000), Coord. Chem. Rev., 196, pp. 165, 10.1016/s0010-8545(99)00054-5
  • Dramićanin, (2020), J. Appl. Phys., 128, pp. 040902, 10.1063/5.0014825
  • Eliseeva, (2009), Chem. Soc. Rev., 39, pp. 189, 10.1039/b905604c
  • Félix, Organometallics, 42, pp. 2613, 10.1021/acs.organomet.3c00009
  • Félix, RSC Adv., 13, pp. 26302, 10.1039/d3ra04901a
  • Fernandes, (2018), Energies., 11, pp. 3513, 10.3390/en11123513
  • Ferreira da Rosa, (2020), Coord. Chem. Rev., 406, pp. 213153, 10.1016/j.ccr.2019.213153
  • Gálico, (2023), Chem. Sci., 14, pp. 5827, 10.1039/d3sc01088k
  • Gregório, (2019), Inorg. Chem., 58, pp. 12099, 10.1021/acs.inorgchem.9b01397
  • Hairer, (2015), Encyclopedia of applied and computational mathematics, pp. 1213, 10.1007/978-3-540-70529-1_139
  • Herrmann, (1994), Angewandte Chemie Int. Ed. Engl., 33, pp. 1285, 10.1002/anie.199412851
  • Jaque, (2012), Nanoscale., 4, pp. 4301, 10.1039/c2nr30764b
  • Kaczmarek, (2019), J. Mater Chem. C, 7, pp. 4222, 10.1039/c8tc06353b
  • Kasprzycka, (2020), J. Rare Earths., 38, pp. 552, 10.1016/j.jre.2020.02.001
  • Kasprzycka, (2017), Chem. – A Eur. J., 23, pp. 1318, 10.1002/chem.201603767
  • Kulakova, (2020), Chem. – A Eur. J., 26, pp. 16567, 10.1002/chem.202004207
  • Kulakova, (2021), Eur. J. Inorg. Chem., 2021, pp. 2696, 10.1002/ejic.202100308
  • Laird, (2021), Dalton Trans., 50, pp. 81, 10.1039/d0dt03057k
  • Liu, (2020), Coord. Chem. Rev., 406, pp. 213145, 10.1016/j.ccr.2019.213145
  • Long, (2011), J. Am. Chem. Soc., 133, pp. 5319, 10.1021/ja109706y
  • Lorenz, (2002), J. Organomet. Chem., 647, pp. 245, 10.1016/s0022-328x(01)01434-6
  • Lorenz, (2004), Angew. Chem. Int. Ed., 43, pp. 4603, 10.1002/anie.200454094
  • Lyubov, (2022), J. Mater Chem. C, 10, pp. 7176, 10.1039/d2tc01289h
  • Malkin, (2005), Spectroscopic properties of rare earths in optical materials, pp. 130, 10.1007/3-540-28209-2_3
  • Malta, (2008), J. Non-Crystalline Solids, 354, pp. 4770, 10.1016/j.jnoncrysol.2008.04.023
  • Manzur, (2023), Inorg. Chem., 62, pp. 19195, 10.1021/acs.inorgchem.3c02201
  • Marchesi, (2014), New J. Chem., 38, pp. 2480, 10.1039/c4nj00157e
  • Miyakawa, (1970), Phys. Rev. B, 1, pp. 2961, 10.1103/physrevb.1.2961
  • Miyata, (2009), Eur. J. Inorg. Chem., 2009, pp. 4777, 10.1002/ejic.200900598
  • Miyata, (2012), J. Photochem. Photobiol. A Chem., 235, pp. 35, 10.1016/j.jphotochem.2012.03.005
  • Monteiro, (2020), Molecules., 25, pp. 2089, 10.3390/molecules25092089
  • Moos, (1970), J. Luminescence., pp. 106, 10.1016/0022-2313(70)90027-x
  • Moura Jr., Opt. Mater. X., 11, pp. 100080, 10.1016/j.omx.2021.100080
  • Moura Jr., Adv. Theory Simulations, 4, pp. 2000304, 10.1002/adts.202000304
  • Nigoghossian, (2021), RSC Adv., 11, pp. 34735, 10.1039/d1ra06755a
  • Ning, (2019), Coord. Chem. Rev., 399, pp. 213028, 10.1016/j.ccr.2019.213028
  • Pelluau, (2023), Nanoscale, 15, pp. 14409, 10.1039/d3nr01851b
  • Prigyai, (2019), Inorg. Chem., 58, pp. 15110, 10.1021/acs.inorgchem.9b01836
  • Reisfeld, (1977), Inorganic chemistry concepts
  • Riseberg, (1977), Progress in optics
  • Rocha, (2016), Chem. – A Eur. J., 22, pp. 14782, 10.1002/chem.201600860
  • Rodríguez-Cortiñas, (2002), Inorg. Chem., 41, pp. 5336, 10.1021/ic025587s
  • SeethaLekshmi, (2017), J. Photochem. Photobiol. C Photochem. Rev., 33, pp. 109, 10.1016/j.jphotochemrev.2017.11.001
  • Shchegolikhina, (1996), J. Organomet. Chem., 514, pp. 29, 10.1016/0022-328x(95)06005-h
  • Sheng, Chem. Mater., 34, pp. 4186, 10.1021/acs.chemmater.2c00627
  • Sheng, Chem. Phys. Mater, 1, pp. 247, 10.1016/j.chphma.2022.04.008
  • Suta, (2020), Adv. Theory Simulations, 3, pp. 2000176, 10.1002/adts.202000176
  • Suzuki, (2007), Biophysical J., 92, pp. L46, 10.1529/biophysj.106.098673
  • Trannoy, (2021), Adv. Opt. Mater., 9, pp. 2001938, 10.1002/adom.202001938
  • Wang, (2014), Nat. Mater. févr, 13, pp. 157, 10.1038/nmat3804
  • Wu, (2009), J. Organomet. Chem., 694, pp. 1571, 10.1016/j.jorganchem.2009.01.042
  • Yanagisawa, (2015), Eur. J. Inorg. Chem., 2015, pp. 4769, 10.1002/ejic.201500820
  • Yang, (2004), Angew. Chem. Int. Ed., 43, pp. 5010, 10.1002/anie.200454141