Morphology does not matter: WSe<sub>2</sub> luminescence nanothermometry unravelled

  1. Martínez-Merino, Paloma 3
  2. Hernández-Rodríguez, Miguel A. 14
  3. Piñero, José C. 2
  4. Brites, Carlos D. S. 1
  5. Alcántara, Rodrigo 3
  6. Navas, Javier 3
  1. 1 Phantom-g, CICECO – Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
  2. 2 Departamento de Didáctica (Área de Matemáticas), Universidad de Cádiz, E-11510 Puerto Real, Spain
  3. 3 Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
  4. 4 Departamento de Física, Universidad de La Laguna, Apdo. Correos 456, E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
Zeitschrift:
Nanoscale

ISSN: 2040-3364 2040-3372

Datum der Publikation: 2024

Art: Artikel

DOI: 10.1039/D4NR00014E GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Nanoscale

Zusammenfassung

Transition metal dichalcogenides, including WSe2, have gained significant attention as promising nanomaterials for various applications due to their unique properties. In this study, we explore the temperature-dependent photoluminescent properties of WSe2 nanomaterials to investigate their potential as luminescent nanothermometers. We compare the performance of WSe2 quantum dots and nanorods synthesized using sonication synthesis and hot injection methods. Our results show a distinct temperature dependence of the photoluminescence, and conventional ratiometric luminescence thermometry demonstrates comparable relative thermal sensitivity (0.68–0.80% K−1) and temperature uncertainty (1.3–1.5 K), irrespective of the morphology of the nanomaterials. By applying multiple linear regression to WSe2 quantum dots, we achieve enhanced thermal sensitivity (30% K−1) and reduced temperature uncertainty (0.1 K), highlighting the potential of WSe2 as a versatile nanothermometer for microfluidics, nanofluidics, and biomedical assays.

Informationen zur Finanzierung

Geldgeber

Bibliographische Referenzen

  • Chhowalla, (2013), Nat. Chem., 5, pp. 263, 10.1038/nchem.1589
  • Ahmed, (2023), Adv. Mater., 35, pp. 2208054, 10.1002/adma.202208054
  • Lee, (2023), Small, 19, pp. 2302713, 10.1002/smll.202302713
  • Gao, (2023), J. Materiomics, 9, pp. 768, 10.1016/j.jmat.2023.02.005
  • Ci, (2017), Nano Lett., 17, pp. 4982, 10.1021/acs.nanolett.7b02159
  • Han, (2018), Chem. Rev., 118, pp. 6297, 10.1021/acs.chemrev.7b00618
  • Wang, (2012), Nat. Nanotechnol., 7, pp. 699, 10.1038/nnano.2012.193
  • Jin, (2013), Phys. Rev. Lett., 111, pp. 106801, 10.1103/PhysRevLett.111.106801
  • Gutierrez, (2013), Nano Lett., 13, pp. 3447, 10.1021/nl3026357
  • Mak, (2010), Phys. Rev. Lett., 105, pp. 136805, 10.1103/PhysRevLett.105.136805
  • Kuc, (2011), Phys. Rev. B: Condens. Matter Mater. Phys., 83, pp. 245213, 10.1103/PhysRevB.83.245213
  • Choudhary, (2016), J. Phys.: Condens.Matter, 28, pp. 364002
  • Monga, (2021), Mater. Today Chem., 19, pp. 100399, 10.1016/j.mtchem.2020.100399
  • Jariwala, (2014), ACS Nano, 8, pp. 1102, 10.1021/nn500064s
  • Brites, (2023), Adv. Mater., 35, pp. 2302749, 10.1002/adma.202302749
  • Jaque, (2012), Nanoscale, 4, pp. 4301, 10.1039/c2nr30764b
  • C. D. S.Brites , A.Millán and L. D.Carlos , in Handbook on the Physics and Chemistry of Rare Earths , ed. J.-C. G. Bünzli and V. K. Pecharsky , Elsevier Science, B. V. , Amsterdam , 2016 , ch. 281, vol. 49 , pp. 339–427
  • Lucia, (2015), Sci. Rep., 5, pp. 11587, 10.1038/srep11587
  • Monti, (1986), Scand. J. Haematol., 36, pp. 353, 10.1111/j.1600-0609.1986.tb01749.x
  • Kallerhoff, (1996), Urol. Res., 24, pp. 83, 10.1007/BF00431084
  • Brown, (1949), Proc. R. Soc. London, Ser. B, 136, pp. 110, 10.1098/rspb.1949.0008
  • Wust, (2002), Lancet Oncol., 3, pp. 487, 10.1016/S1470-2045(02)00818-5
  • Zhang, (2016), Adv. Mater., 28, pp. 6872, 10.1002/adma.201600706
  • Antaris, (2016), Nat. Mater., 15, pp. 235, 10.1038/nmat4476
  • Lee, (2021), Materials, 14, pp. 616, 10.3390/ma14030616
  • Haro-Gonzalez, (2013), Small, 9, pp. 2162, 10.1002/smll.201201740
  • Shang, (2013), Angew. Chem., Int. Ed., 52, pp. 11154, 10.1002/anie.201306366
  • Terentyuk, (2012), Quantum Electron., 42, pp. 380, 10.1070/QE2012v042n05ABEH014853
  • del Rosal, (2015), J. Appl. Phys., 118, pp. 143104, 10.1063/1.4932669
  • Balabhadra, (2016), J. Lumin., 180, pp. 25, 10.1016/j.jlumin.2016.07.034
  • Gota, (2009), J. Am. Chem. Soc., 131, pp. 2766, 10.1021/ja807714j
  • Okabe, (2012), Nat. Commun., 3
  • Zhou, (2020), Nat. Methods, 17, pp. 967, 10.1038/s41592-020-0957-y
  • Urbach, (1949), J. Opt. Soc. Am., 39, pp. 1011, 10.1364/JOSA.39.001011
  • Bradley, (1953), Rev. Sci. Instrum., 24, pp. 219, 10.1063/1.1770668
  • Lawson, (1964), Ann. N. Y. Acad. Sci., 121, pp. 31, 10.1111/j.1749-6632.1964.tb13682.x
  • Han, (2009), Ann. Biomed. Eng., 37, pp. 1230, 10.1007/s10439-009-9681-6
  • Maestro, (2010), Nano Lett., 10, pp. 5109, 10.1021/nl1036098
  • Vallee, (1972), Annu. Rev. Biochem., 41, pp. 91, 10.1146/annurev.bi.41.070172.000515
  • Benayas, (2015), Adv. Funct. Mater., 25, pp. 6650, 10.1002/adfm.201502632
  • Shen, (2020), Adv. Funct. Mater., 30, pp. 2002730, 10.1002/adfm.202002730
  • Santos, (2017), Nanoscale, 9, pp. 2505, 10.1039/C6NR08534B
  • Liang, (2013), Chem. Commun., 49, pp. 969, 10.1039/C2CC37553B
  • Maturi, (2021), Laser Photonics Rev., 15
  • Zanella, (2023), Angew. Chem., Int. Ed., 10.1002/anie.202306970
  • Ximendes, (2022), Light: Sci. Appl., 11
  • Chng, (2015), RSC Adv., 5, pp. 3074, 10.1039/C4RA12624F
  • Singh, (2023), Synth. Met., 293, pp. 117263, 10.1016/j.synthmet.2022.117263
  • Anubhav, (2013), APL Mater., 1, pp. 011002, 10.1063/1.4812323
  • Ding, (2023), Tungsten, 5, pp. 350, 10.1007/s42864-023-00209-1
  • Ding, (2021), J. Phys. D: Appl. Phys., 54, pp. 173002, 10.1088/1361-6463/abd9e8
  • Nie, (2014), Chem. Mater., 26, pp. 3104, 10.1021/cm5003669
  • Li, (2014), Nanoscale, 6, pp. 9831, 10.1039/C4NR02592J
  • Xu, (2015), Adv. Funct. Mater., 25, pp. 1127, 10.1002/adfm.201403863
  • Li, (2011), Adv. Mater., 23, pp. 776, 10.1002/adma.201003819
  • Peng, (2012), Nano Lett., 12, pp. 844, 10.1021/nl2038979
  • Gu, (2016), J. Mater. Chem. B, 4, pp. 27, 10.1039/C5TB01839K
  • Gopalakrishnan, (2015), Chem. Commun., 51, pp. 6293, 10.1039/C4CC09826A
  • Bora, (2020), J. Colloid Interface Sci., 561, pp. 519, 10.1016/j.jcis.2019.11.027
  • Oreszczuk, (2020), Phys. Rev. B, 102, pp. 245409, 10.1103/PhysRevB.102.245409
  • Wang, (2023), Phys. Rev. Lett., 131, pp. 245409
  • Massicotte, (2018), Nat. Commun., 9, pp. 066401, 10.1038/s41467-018-03864-y
  • You, (2015), Nat. Phys., 11, pp. 477-U138, 10.1038/nphys3324
  • Jeong, (2016), ACS Nano, 10, pp. 5560, 10.1021/acsnano.6b02253
  • Suyver, (2003), J. Lumin., 104, pp. 187, 10.1016/S0022-2313(03)00015-2
  • Zhou, (2020), Nanoscale, 12, pp. 22307, 10.1039/D0NR05691J
  • Alencar, (2004), Appl. Phys. Lett., 84, pp. 4753, 10.1063/1.1760882
  • Dong, (2014), Phys. Chem. Chem. Phys., 16, pp. 20009, 10.1039/C4CP01966K
  • Marciniak, (2017), J. Mater. Chem. C, 5, pp. 7890, 10.1039/C7TC02322G
  • Marciniak, (2017), Sens. Actuators, B, 238, pp. 381, 10.1016/j.snb.2016.07.080
  • Balabhadra, (2017), J. Phys. Chem. C, 121, pp. 13962, 10.1021/acs.jpcc.7b04827
  • Brandão-Silva, (2018), J. Alloys Compd., 731, pp. 478, 10.1016/j.jallcom.2017.09.156