The Immune Response of OAS1, IRF9, and IFI6 Genes in the Pathogenesis of COVID-19

  1. Gajate-Arenas, Malena 1
  2. Fricke-Galindo, Ingrid 4
  3. García-Pérez, Omar 1
  4. Domínguez-de-Barros, Angélica 1
  5. Pérez-Rubio, Gloria 4
  6. Dorta-Guerra, Roberto 17
  7. Buendía-Roldán, Ivette 6
  8. Chávez-Galán, Leslie 5
  9. Lorenzo-Morales, Jacob 123
  10. Falfán-Valencia, Ramcés 4
  11. Córdoba-Lanús, Elizabeth 12
  1. 1 Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain
  2. 2 Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
  3. 3 Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Faculty of Health Sciences, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
  4. 4 HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
  5. 5 Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
  6. 6 Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
  7. 7 Department of Mathematics, Statistics and Operations Research, Faculty of Sciences, Mathematics Section, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
Journal:
International Journal of Molecular Sciences

ISSN: 1422-0067

Year of publication: 2024

Volume: 25

Issue: 9

Pages: 4632

Type: Article

DOI: 10.3390/IJMS25094632 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: International Journal of Molecular Sciences

Abstract

COVID-19 is characterized by a wide range of clinical manifestations, where aging, underlying diseases, and genetic background are related to worse outcomes. In the present study, thedifferential expression of seven genes related to immunity, IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1,and TFRC, was analyzed in individuals with COVID-19 diagnoses of different disease severities.Two-step RT-qPCR was performed to determine the relative gene expression in whole-blood samplesfrom 160 individuals. The expression of OAS1 (p < 0.05) and IFI6 (p < 0.05) was higher in moderatehospitalized cases than in severe ones. Increased gene expression of OAS1 (OR = 0.64, CI = 0.52–0.79;p = 0.001), IRF9 (OR = 0.581, CI = 0.43–0.79; p = 0.001), and IFI6 (OR = 0.544, CI = 0.39–0.69; p < 0.001)was associated with a lower risk of requiring IMV. Moreover, TGFB1 (OR = 0.646, CI = 0.50–0.83;p = 0.001), CCL5 (OR = 0.57, CI = 0.39–0.83; p = 0.003), IRF9 (OR = 0.80, CI = 0.653–0.979; p = 0.03),and IFI6 (OR = 0.827, CI = 0.69–0.991; p = 0.039) expression was associated with patient survival. Inconclusion, the relevance of OAS1, IRF9, and IFI6 in controlling the viral infection was confirmed

Bibliographic References

  • Wiersinga, (2020), J. Am. Med. Assoc., 324, pp. 782, 10.1001/jama.2020.12839
  • Hu, (2021), Nat. Rev. Microbiol., 19, pp. 141, 10.1038/s41579-020-00459-7
  • Kumar, (2021), J. Med. Virol., 93, pp. 1343, 10.1002/jmv.26615
  • Yang, (2021), Nat. Rev. Microbiol., 19, pp. 685, 10.1038/s41579-021-00630-8
  • Tsai, (2021), J. Chin. Med. Assoc., 84, pp. 3, 10.1097/JCMA.0000000000000463
  • Rahman, (2021), Expert Rev. Clin. Pharmacol., 14, pp. 601, 10.1080/17512433.2021.1902303
  • Jiang, (2022), Int. J. Biol. Sci., 18, pp. 459, 10.7150/ijbs.59272
  • Ragab, (2020), Front. Immunol., 11, pp. 551898, 10.3389/fimmu.2020.01446
  • Grifoni, (2023), Front. Immunol., 14, pp. 1146704, 10.3389/fimmu.2023.1146704
  • Inde, (2021), Sci. Adv., 7, pp. eabf8609, 10.1126/sciadv.abf8609
  • Khan, (2020), J. Glob. Health, 10, pp. 020503, 10.7189/jogh.10.020503
  • Chenchula, (2023), Sci. Rep., 13, pp. 6415, 10.1038/s41598-023-33314-9
  • Amati, (2020), Heliyon, 6, pp. e05143, 10.1016/j.heliyon.2020.e05143
  • Casanova, (2020), Cell, 181, pp. 1194, 10.1016/j.cell.2020.05.016
  • Mick, (2020), Nat. Commun., 11, pp. 5854, 10.1038/s41467-020-19587-y
  • Zaas, (2009), Cell Host Microbe, 6, pp. 207, 10.1016/j.chom.2009.07.006
  • Lieberman, N.A.P., Peddu, V., Xie, H., Shrestha, L., Huang, M.L., Mears, M.C., Cajimat, M.N., Bente, D.A., Shi, P.Y., and Bovier, F. (2020). In Vivo Antiviral Host Transcriptional Response to SARS-CoV-2 by Viral Load, Sex, and Age. PLoS Biol., 18.
  • Menachery, V.D., Eisfeld, A.J., Schäfer, A., Josset, L., Sims, A.C., Proll, S., Fan, S., Li, C., Neumann, G., and Tilton, S.C. (2014). Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches to Control Interferon-Stimulated Gene Responses. MBio, 5.
  • Sen, (2023), Hum. Gene, 35, pp. 201135, 10.1016/j.humgen.2022.201135
  • Malterer, (2014), Annu. Rev. Immunol., 32, pp. 513, 10.1146/annurev-immunol-032713-120231
  • Zhang, Y.H., Li, H., Zeng, T., Chen, L., Li, Z., Huang, T., and Cai, Y.D. (2021). Identifying Transcriptomic Signatures and Rules for SARS-CoV-2 Infection. Front. Cell Dev. Biol., 8.
  • Zhou, (2021), Nat. Med., 27, pp. 659, 10.1038/s41591-021-01281-1
  • Meyer, (2015), Sci. Rep., 5, pp. 9012, 10.1038/srep09012
  • Kuroda, (2020), Nat. Commun., 11, pp. 2953, 10.1038/s41467-020-16768-7
  • Huang, (2020), Lancet, 395, pp. 497, 10.1016/S0140-6736(20)30183-5
  • Agresti, (2021), J. Transl. Autoimmun., 4, pp. 100083, 10.1016/j.jtauto.2021.100083
  • Vaz de Paula, C.B., Nagashima, S., Liberalesso, V., Collete, M., da Silva, F.P.G., Oricil, A.G.G., Barbosa, G.S., da Silva, G.V.C., Wiedmer, D.B., and da Silva Dezidério, F. (2021). COVID-19: Immunohistochemical Analysis of TGF-β Signaling Pathways in Pulmonary Fibrosis. Int. J. Mol. Sci., 23.
  • Gajate-Arenas, M., García-Pérez, O., Chao-Pellicer, J., Domínguez-de-Barros, A., Dorta-guerra, R., Lorenzo-morales, J., and Córdoba-Lanús, E. (2023). Differential Expression of Antiviral and Immune-Related Genes in Individuals with COVID-19 Asymptomatic or with Mild Symptoms. Front. Cell. Infect. Microbiol., 13.
  • Barek, (2020), Heliyon, 6, pp. e05684, 10.1016/j.heliyon.2020.e05684
  • (2021), Front. Immunol., 12, pp. 622176, 10.3389/fimmu.2021.622176
  • Kristiansen, (2011), J. Interf. Cytokine Res., 31, pp. 41, 10.1089/jir.2010.0107
  • Wickenhagen, (2021), Science, 374, pp. eabj3624, 10.1126/science.abj3624
  • Banday, (2022), Nat. Genet., 54, pp. 1103, 10.1038/s41588-022-01113-z
  • Cheriyath, (2018), Br. J. Cancer, 119, pp. 52, 10.1038/s41416-018-0137-3
  • Park, (2013), Genomics Inform., 11, pp. 15, 10.5808/GI.2013.11.1.15
  • Garmendia, (2019), J. Allergy Clin. Immunol., 144, pp. 309, 10.1016/j.jaci.2019.02.019
  • Gothe, (2022), J. Allergy Clin. Immunol., 150, pp. 955, 10.1016/j.jaci.2022.01.026
  • Assou, S., Ahmed, E., Morichon, L., Nasri, A., Foisset, F., Bourdais, C., Gros, N., Tieo, S., Petit, A., and Vachier, I. (2023). The Transcriptome Landscape of the In Vitro Human Airway Epithelium Response to SARS-CoV-2. Int. J. Mol. Sci., 24.
  • Rashid, (2022), Front. Immunol., 13, pp. 940756, 10.3389/fimmu.2022.940756
  • Liu, Q., Chi, S., Dmytruk, K., Dmytruk, O., and Tan, S. (2022). Coronaviral Infection and Interferon Response: The Virus-Host Arms Race and COVID-19. Viruses, 14.
  • Li, (2006), Annu. Rev. Immunol., 24, pp. 99, 10.1146/annurev.immunol.24.021605.090737
  • Florindo, (2020), Nat. Nanotechnol., 15, pp. 630, 10.1038/s41565-020-0732-3
  • Kang, (2023), J. Med. Virol., 95, pp. e28894, 10.1002/jmv.28894
  • Kulkarni, (1993), Proc. Natl. Acad. Sci. USA, 90, pp. 770, 10.1073/pnas.90.2.770
  • Marques, (2013), Expert Opin. Ther. Targets, 17, pp. 1439, 10.1517/14728222.2013.837886
  • Patterson, B.K., Seethamraju, H., Dhody, K., Corley, M.J., Kazempour, K., Lalezari, J.P., Pang, A.P., Sugai, C., Francisco, E.B., and Pise, A. (2020). Disruption of the CCL5/RANTES-CCR5 Pathway Restores Immune Homeostasis and Reduces Plasma Viral Load in Critical COVID-19. medRxiv, 5.
  • (2023), Int. J. Infect. Dis., 134, pp. 126, 10.1016/j.ijid.2023.06.001
  • (2022), J. Infect. Dis., 225, pp. 977, 10.1093/infdis/jiab604
  • Ye, (2020), J. Infect., 80, pp. 607, 10.1016/j.jinf.2020.03.037
  • Willscher, (2022), Cell Reports Med., 3, pp. 100663, 10.1016/j.xcrm.2022.100663
  • Yang, C., Li, J., Guo, Y., Gan, D., Zhang, C., Wang, R., Hua, L., Zhu, L., Ma, P., and Shi, J. (2022). Role of TFRC as a Novel Prognostic Biomarker and in Immunotherapy for Pancreatic Carcinoma. Front. Mol. Biosci., 9.
  • Muhammad, (2022), Biochem. Biophys. Res. Commun., 631, pp. 138, 10.1016/j.bbrc.2022.09.083
  • Wicik, Z., Eyileten, C., Jakubik, D., Simões, S.N., Martins, D.C., Pavão, R., Siller-Matula, J.M., and Postula, M. (2020). ACE2 Interaction Networks in COVID-19: A Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors. J. Clin. Med., 9.
  • Brunelli, (2022), Front. Immunol., 12, pp. 806400, 10.3389/fimmu.2021.806400
  • Engel, (2023), Front. Immunol., 14, pp. 1233318, 10.3389/fimmu.2023.1233318
  • Pinski, (2021), J. Leukoc. Biol., 110, pp. 1225, 10.1002/JLB.4COVA0121-084RR
  • (2022), Front. Med., 9, pp. 1000147, 10.3389/fmed.2022.1000147