Uso de los Sistemas de Vídeo Estereoscópico Submarino Remoto pelágicos (stereo-BRUV) para el estudio de las tortugas marinas en aguas atlánticas

  1. Hurtado-Pampín, Claudia 1
  2. Cruz-Modino, Raquel de la 1
  3. Hernández, José Carlos 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Scientia Insularum: Revista de Ciencias Naturales en islas

ISSN: 2659-6644

Año de publicación: 2024

Número: 5

Páginas: 117-131

Tipo: Artículo

DOI: 10.25145/J.SI.2024.05.07 DIALNET GOOGLE SCHOLAR lock_openRIULL editor

Otras publicaciones en: Scientia Insularum: Revista de Ciencias Naturales en islas

Resumen

La zona oceánica pelágica es uno de los ecosistemas más extensos del planeta. Para estudiar y promover medidas de conservación de la biodiversidad de dichos ecosistemas se necesita conocer la distribución de las especies, el uso del hábitat, el grado de conectividad y el estado en el que se encuentran las poblaciones. Realizar dichos seguimientos para especies pelágicas y migratorias es complicado debido a que su distribución no es homogénea y pueden presentar una distribución amplia en diferentes hábitats, como es el caso de las tortugas marinas. En los últimos años, los sistemas remotos de vídeo «Baited Remote Underwater Stereo-Video» (BRUV) se han convertido en una herramienta popular para evaluar de manera no intrusiva. Esta novedosa técnica nos puede facilitar información muy importante sobre los ecosistemas pelágicos. Y, en concreto, para el estudio y la conservación de las tortugas marinas, al proporcionar conocimientos estratégicos sobre áreas que no han sido estudiadas en detalle, como pueden ser las zonas de alimentación y los corredores de migración en zonas pelágicas-costeras.

Referencias bibliográficas

  • Angel, M. V. (1993). Biodiversity of the pelagic ocean. Conservation biology, 7(4): 760-772.
  • Barord, G.J., Dooley, F., Dunstan. A., Ilano, A., Keister, K.N., Neumeister, H., Preuss, T., Schoepfer, S. and Ward, P.D. (2014). Comparative population assessments of Nautilus sp. in the Philippines, Australia, Fiji, and American Samoa using baited remote underwater video systems. PLoS One, 9:4–8.
  • Birt, M. J., Harvey, E. S., and Langlois, T. J. (2012). Within and between day variability in temperate reef fish assemblages: learned response to baited video. Journal of Experimental Marine Biology and Ecology, 416:92-100.
  • Bond, M. E., Babcock, E. A., Pikitch, E. K., Abercrombie, D. L., Lamb, N. F., and Chapman, D. D. (2012). Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef. PloS one, 7(3): e32983.
  • Bouchet, P. J. and Meeuwig, J. J. (2015). Drifting baited stereo‐videography: a novel sampling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere, 6(8): 1-29.
  • Bouchet, P. J., Meeuwig, J., Huveneers, C., Langlois, T., Letessier, T., Lowry, M., Rees, M., Santana-Garcon, J., Scott, M., Taylor, M., Thompson, C., Vigliola, L., Whitmarsh, S. (2018). Marine sampling field manual for pelagic stereo BRUVS (baited remote underwater videos) in Field Manuals for Marine Sampling to Monitor Australian Waters, Version 1, eds R. Przeslawski, and S. Foster (Canberra, ACT: NESP Marine Biodiversity Hub), 105–132.
  • Cambra, M., Lara-Lizardi, F., Peñaherrera-Palma, C., Hearn, A., Ketchum, J. T., Zárate, P., Chacó, C., Suárez-Moncada, J., Herrera, E., and Espinoza, M. (2021). A first assessment of the distribution and abundance of large pelagic species at Cocos Ridge seamounts (Eastern Tropical Pacific) using drifting pelagic baited remote cameras. PloS One, 16(11): e0244343.
  • Cappo M., Harvey, E.B., Malcolm, H.C., Speare, P. (2003). Potential of Video Techniques To Monitor Diversity, Abundance and Size of Fish in Studies of Marine Protected Areas. Aquatic Protected Areas-what works best and how do we know, 455–464.
  • Cappo, M., Speare, P., and De’ath, G. (2004). Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. Journal of Experimental Marine Biology and Ecology, 302(2): 123-152.
  • Cardona, L., Revelles, M., Carreras, C., San Félix, M., Gazo, M., and Aguilar, A. (2005). Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Marine Biology, 147: 583-591.
  • Coles, W., and Musick, J. A. (2000). Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia, 2000(2): 551-554.
  • Cooke, S. J., Hinch, S. G., Wikelski, M., Andrews, R. D., Kuchel, L. J., Wolcott, T. G., and Butler, P. J. (2004). Biotelemetry: a mechanistic approach to ecology. Trends in ecology & evolution, 19(6): 334-343.
  • Dujon, A. M., Schofield, G., Lester, R. E., Papafitsoros, K., and Hays, G. C. (2018). Complex movement patterns by foraging loggerhead sea turtles outside the breeding season identified using Argos‐linked Fastloc‐Global Positioning System. Marine Ecology, 39(1): e12489.
  • REVISTA SCIENTIA INSULARUM, 5; 2024, PP. 117-131 128 Eckert, S. A., Eckert, K. L., Ponganis, P., and Kooyman, G. L. (1989). Diving and foraging behavior of leatherback sea turtles (Dermochelys coriacea). Canadian journal of zoology, 67(11): 2834-2840.
  • Epperly, S. P. (2003). Fisheries-Related Mortality and Turtle Excluder Devices (TEDs). The Biology of Sea Turtles, Vol. 2., CRC Press, 2003: 339-354.
  • Epperly, S. P., Braun, J., and Chester, A. J. (1995). Aerial surveys for sea turtles in North Carolina inshore waters. Fishery Bulletin, 93(2): 254-261.
  • Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J., and Simpfendorfer, C. A. (2014). Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning. PloS one, 9(9): e106885.
  • Garzon, F., Williams, C. T., Cochran, J. E., Tanabe, L. K., Abdulla, A., Berumen, M. L., Habis, T., Marshall, P.A., Rodrigue, M. and Hawkes, L. A. (2022). A multi-method characterization of Elasmobranch & Cheloniidae communities of the north-eastern Red Sea and Gulf of Aqaba. Plos one, 17(9): e0275511.
  • Goetze, J. S. and Fullwood, L. A. F. (2013). Fiji’s largest marine reserve benefits reef sharks. Coral Reefs, 32: 121-125.
  • Goetze, J. S., Langlois, T. J., Egli, D. P., and Harvey, E. S. (2011). Evidence of artisanal fishing impacts and depth refuge in assemblages of Fijian reef fish. Coral Reefs, 30: 507-517.
  • Harvey, E., and Shortis, M. (1995). A system for stereo-video measurement of sub-tidal organisms. Marine Technology Society Journal, 29(4): 10-22.
  • Harvey, E., Cappo, M., Kendrick, G. A., amd McLean, D. L. (2013). Coastal fish assemblages reflect geological and oceanographic gradients within an Australian zootone. PloS one, 8(11): e80955.
  • Harvey, E., Fletcher, D., Shortis, M. (2001). A comparison of the precision and accuracy of estimates of reef-fish lengths determined visually by divers with estimates produced by a stereo-video system. Fish Bull, 99(1):63–71.
  • Harvey, E., Goetze, J., McLaren, B., Langlois, T., and Shortis, M. (2010). Influence of range, angle of view, image resolution and image compression on underwater stereo-video measurements: high-definition and broadcast-resolution video cameras compared. Marine Technology Society Journal, 44(1): 75-85.
  • Harvey, E. S., McLean, D. L., Goetze, J. S., Saunders, B. J., Langlois, T. J., Monk, J., Barret, N., Wilson, S. K., Holmes, T.H., Lerodiaconou, D., Jordan, A. R., Meekan, M. G., Malcom, H. A., Heupel, M. R., Harasti, D., Huveneers, C., Knott, N. A., Fairclough, D. V., Currey-Randall, L. M., Travers, M. J., Radford, B. T., Rees, M. J., Speed, C. W., Wakefield, C. B., Cappo, M. and Newman, S. J. (2021). The BRUVs workshop–An Australia-wide synthesis of baited remote underwater video data to answer broad-scale ecological questions about fish, sharks and rays. Marine Policy, 127: 104430.
  • Hatase, H., Omuta, K., and Tsukamoto, K. (2007). Bottom or midwater: alternative foraging behaviours in adult female loggerhead sea turtles. Journal of Zoology, 273(1): 46-55.
  • Hays, G. C. and Hawkes, L. A. (2018). Satellite tracking sea turtles: Opportunities and challenges to address key questions. Frontiers in Marine Science, 5: 432.
  • Hays, G. C., Christensen, A., Fossette, S., Schofield, G., Talbot, J., and Mariani, P. (2014a). Route optimisation and solving Z ermelo’s navigation problem during long distance migration in cross flows. Ecology letters, 17(2): 137-143.
  • Hays, G. C., Ferreira, L. C., Sequeira, A. M., Meekan, M. G., Duarte, C. M., Bailey, H., Bailleul, F., Bowen, W. D, Caley, M. J., Costa, D. P., Eguíluz, V. M., Fossette, S., Friedlaender, A. S., Gales, N., Gleiss, A. C., Gunn, J., Harcourt, R., Hazen, E. L., Heithaus, M. R., Heupel, M., Holland, K., Horning, M., Jonsen, I., Kooyman, G. L., Lowe, C. G., Madsen, P. T., Marsh, H., Phillips, R. A., Righton, D., Ropert-Coudert, Y., Sato, K., Shaffer, S. A., Simpfendorfer, C. A., Sims, D. W., Skomal, G., Takahashi, A., Trathan, P. N., Wikelski, M., Womble, J. N. and Thums, M. (2016). Key questions in marine megafauna movement ecology. Trends in ecology & evolution, 31(6): 463-475.
  • Hays, G. C., Mazaris, A. D., and Schofield, G. (2014b). Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Frontiers in Marine Science, 1: 43.
  • Kotera, M., and Phillott, A. D. (2020). Camera traps in sea turtle research and conservation. Emergence.
  • Langlois, T. J., Fitzpatrick, B. R., Fairclough, D. V., Wakefield, C. B., Hesp, S. A., McLean, D. L., Harvey, E. S. and Meeuwig, J. J. (2012). Similarities between line fishing and baited stereo-video estimations of length-frequency: novel application of kernel density estimates. PLoS One, 7(11): e45973.
  • Letessier, T. B., Bouchet, P. J., Reisser, J., and Meeuwig, J. J. (2015). Baited videography reveals remote foraging and migration behaviour of sea turtles. Marine Biodiversity, 45(4): 609-610.
  • Lewison, R. L., Freeman, S. A., and Crowder, L. B. (2004). Quantifying the effects of fisheries on threatened species: the impact of pelagic longlines on loggerhead and leatherback sea turtles. Ecology letters, 7(3): 221-231.
  • Luschi, P., Hays, G. C., and Papi, F. (2003). A review of long‐distance movements by marine turtles, and the possible role of ocean currents. Oikos, 103(2): 293-302.
  • MacNeil, M. A., Chapman, D. D., Heupel, M., Simpfendorfer, C. A., Heithaus, M., Meekan, M., ... and Cinner, J. E. (2020). Global status and conservation potential of reef sharks. Nature, 583(7818): 801-806.
  • Mallet, D., and Pelletier, D. (2014). Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952–2012). Fisheries Research, 154: 44-62.
  • Maureaud, A., Gascuel, D., Colle, M., Pontavice, H. D., Pauly, D. and Cheung, W. W. L. (2017). Global change in the trophic functioning of marine food webs. PLoS One, 12(8): 1–21.
  • Murray, K. T. (2011). Interactions between sea turtles and dredge gear in the US sea scallop (Placopecten magellanicus) fishery, 2001–2008. Fisheries Research, 107(1-3): 137-146.
  • Nash, K. L., Bijoux, J., Robinson, J., Wilson, S. K., and Graham, N. A. (2016). Harnessing fishery‐independent indicators to aid management of data‐poor fisheries: weighing habitat and fishing effects. Ecosphere, 7(7): e01362.
  • Pala, C. (2013). Giant marine reserves pose vast challenges. Science 339:640-641.
  • Patel, S. H. (2013). Movements, behaviors and threats to loggerhead turtles (Caretta caretta) in the Mediterranean Sea. Drexel University.
  • Prato, G., Guidetti, P., Bartolini, F., Mangialajo, L. and Francour, P. (2013). The importance of high-level predators in marine protected area management: Consequences of their decline and their potential recovery in the Mediterranean context. Adv Oceanogr Limnol, 4:176–193.
  • Rees, M. J., Knott, N. A., Fenech, G. V., and Davis, A. R. (2015). Rules of attraction: enticing pelagic fish to mid-water remote underwater video systems (RUVS). Marine Ecology Progress Series, 529: 213-218.
  • Richard, J. D. and Hughes, D. A. (1972). Some observations of sea turtle nesting activity in Costa Rica. Marine Biology, 16: 297-309.
  • Rizzari, J. R., Frisch, A. J., Magnenat, K. A. (2014). Diversity , abundance , and distribution of reef sharks on outer-shelf reefs of the Great Barrier Reef , Australia. Mar Biol, 161:2847–2855.
  • Roos, D., Pelletier, D., Ciccione, S., Taquet, M., and Hughes, G. (2005). Aerial and snorkelling census techniques for estimating green turtle abundance on foraging areas: a pilot study in Mayotte Island (Indian Ocean). Aquatic Living Resources, 18(2): 193-198.
  • Ryan, L. A., Chapuis, L., Hemmi, J. M., Collin, S. P., McCauley, R. D., Yopak, K. E., Gennari, E., Huveneers, C., Kempster, R. M., Kerr, C. C., Schmidit, C., Egeberg, C. A. and Hart, N. S. (2018). Effects of auditory and visual stimuli on shark feeding behaviour: the disco effect. Marine biology, 165: 1-16.
  • Santana‐Garcon, J., Braccini, M., Langlois, T. J., Newman, S. J., McAuley, R. B., and Harvey, E. S. (2014a). Calibration of pelagic stereo‐BRUV s and scientific longline surveys for sampling sharks. Methods in Ecology and Evolution, 5(8): 824-833.
  • Santana-Garcon, J., Leis, J. M., Newman, S. J. and Harvey, E. S. (2014b). Presettlement schooling behaviour of a priacanthid, the Purplespotted Bigeye Priacanthus tayenus (Priacanthidae: Teleostei). Environmental Biology of Fishes, 97:277-283.
  • Santana-Garcon, J., Newman, S. J. and Harvey, E. S. (2014c). Development and validation of a mid-water baited stereovideo technique for investigating pelagic fish assemblages. Journal of Experimental Marine Biology and Ecology, 452:82-90 . Schofield, G., Katselidis, K. A., Dimopoulos, P., Pantis, J. D., and Hays, G. C. (2006). Behaviour analysis of the loggerhead sea turtle Caretta caretta from direct in-water observation. Endangered Species Research, 2: 71-79.
  • Schofield, G., Papafitsoros, K., Chapman, C., Shah, A., Westover, L., Dickson, L. C., and Katselidis, K. A. (2022). More aggressive sea turtles win fights over foraging resources independent of body size and years of presence. Animal Behaviour, 190: 209-219.
  • Sequeira, A. M., Heupel, M. R., Lea, M. A., Eguíluz, V. M., Duarte, C. M., Meekan, M. G., Thums, M., Calich, H.J., Carmichael, D.P., Ferrerira, L.C., Fernandéz-Gracia, J., Harcourt, R., Harrison, A.L., Jonsen, I., McMahon, C.R., Sims, D.W., Wilson, R.P. and Hays, G. C. (2019). The importance of sample size in marine megafauna tagging studies. Ecological Applications, 29(6): e01947.
  • Smolowitz, R., Milliken, H. O., and Weeks, M. (2012). Design, evolution, and assessment of a sea turtle deflector dredge for the US northwest Atlantic sea scallop fishery: impacts on fish bycatch. North American journal of fisheries management, 32(1): 65-76.
  • Smolowitz, R. J., Patel, S. H., Haas, H. L., and Miller, S. A. (2015). Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States. Journal of Experimental Marine Biology and Ecology, 471: 84-91.
  • Speed, C. W., Cappo, M. and Meekan, M. G. (2018). Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol Conserv, 220: 308–319.
  • Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R., Harcourt, R.G., Stevens, J. D., Babcock, R. C., Pillans, R. D. and Bradshaw, C. J. A. (2016). Reef shark movements relative to a coastal marine protected area. Reg Stud Mar Sci, 3:58–66.
  • Stowar, M., De’ath, G., Doherty, P., Johansson, C., Speare, P., and Venables, B. (2008). Influence of zoning on midshelf shoals from the southern Great Barrier Reef. Report to the Marine and Tropical Sciences Research Facility.
  • Udyawer, V., Cappo, M., Simpfendorfer, C. A., Heupel, M. R., and Lukoschek, V. (2014). Distribution of sea snakes in the Great Barrier Reef Marine Park: observations from 10 years of baited remote underwater video station (BRUVS) sampling. Coral Reefs, 33: 777-791.
  • Wallace, B. P., Avens, L., Braun-McNeill, J., and McClellan, C. M. (2009). The diet composition of immature loggerheads: insights on trophic niche, growth rates, and fisheries interactions. Journal of experimental marine biology and ecology, 373(1): 50-57.
  • Warden, M. L., Haas, H. L., Rose, K. A., and Richards, P. M. (2015). A spatially explicit population model of simulated fisheries impact on loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic Ocean. Ecological modelling, 299: 23-39.
  • Watson, D. L., and Harvey, E. S. (2007). Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver. Marine and Freshwater Behaviour and Physiology, 40(2): 85-103.
  • Whitmarsh, S. K., Fairweather, P. G., and Huveneers, C. (2017). What is Big BRUVver up to? Methods and uses of baited underwater video. Reviews in Fish Biology and Fisheries, 27: 53-73