Peer assessment processes in a problem-solving activity with future teachers

  1. de-Armas-González, Patricia 1
  2. Perdomo-Díaz, Josefa 1
  3. Sosa-Martín, Diana 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Zeitschrift:
Eurasia Journal of Mathematics, Science and Technology Education

ISSN: 1305-8215 1305-8223

Datum der Publikation: 2023

Ausgabe: 19

Nummer: 4

Seiten: em2245

Art: Artikel

DOI: 10.29333/EJMSTE/13057 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Eurasia Journal of Mathematics, Science and Technology Education

Zusammenfassung

Assessing problem-solving remains a challenge for both teachers and researchers. With the aim of contributing to the understanding of this complex process, this paper presents an exploratory study of peer assessment in mathematical problem-solving activities. The research was conducted with a group of future Secondary mathematics teachers who first were asked to individually solve an open-ended problem and then, to assess a classmate’s answer in pairs. We present a study of two cases involving two pairs of students, each of whom assessed the solution of a third classmate. The analysis was carried out in two interrelated phases: (a) individual solutions to the mathematical problem and (b) the peer assessment process. The results show that, in both cases, the assessors were strongly attached to their own solutions, which directly influenced the assessment process, focused on aspects that involve the general problem-solving process and the results. The main difference between the evaluation processes followed by the two pairs lies in the concept of assessment. While the first pair focuses on assessing the resolution process and errors, the other focuses its discussion on giving a numerical grade.

Bibliographische Referenzen

  • Amaya, T., & Medina, A. (2013). Dificultades de los estudiantes de grado once al hacer transformaciones de representaciones de una función con el registro figural como registro principal [Difficulties of eleventh grade students when making transformations of representations of a function with the figural register as main register]. Educación Matemática [Mathematics Education], 25(2), 119-140.
  • Arnal-Bailera, A., Muñoz-Escolano, J. M., & Oller-Marcén, A. M. (2018). Análisis de las anotaciones realizadas por profesores al calificar pruebas escritas de matemáticas [Analysis of the annotations made by teachers when grading written math tests]. In L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P., Alonso, F. J. García García, & A. Bruno (Eds.), Investigación en educación matemática XXII [Research in mathematics education XXII] (pp. 131-140). SEIEM.
  • Ayalon, M., & Wilkie, K. J. (2021). Investigating peer assessment strategies for mathematics pre-service teacher learning on formative assessment. Journal of Mathematics Teacher Education, 24, 399-426. https://doi.org/10.1007/s10857-020-09465-1
  • Bakker, A., Cai, J., & Zenger, L. (2021). Future themes of mathematics education research: An international survey before and during the pandemic. Educational Studies in Mathematics, 107, 1-24. https://doi.org/10.1007/s10649-021-10049-w
  • Beaver C., & Beaver. S. (2011). The effect of peer assessment on the attitudes of pre-service elementary and middle school teachers about writing and assessing mathematics. IUMPST: The Journal, 5, 1-14.
  • Black, P. & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21, 5-31. https://doi.org/10.1007/s11092-008-9068-5
  • Cáceres, M. J., & Chamoso, J. M. (2015). La evaluación sobre la resolución de problemas de matemáticas [The assessment on solving math problems]. In L. Blanco, J. A. Cárdenas, & A. Caballero (Eds.), La resolución de problemas de matemáticas en la formación inicial de profesores de primaria [The resolution of mathematics problems in the initial training of primary school teachers] (pp. 225-241). Universidad de Extremadura.
  • Cai, J., & Lester, F. (2010). Why is teaching with problem-solving important to student learning? National Council of Teachers of Mathematics.
  • Cárdenas, J. A., Blanco, L. J., Guerrero, E., & Caballero, A. (2016). Manifestaciones de los profesores de matemáticas sobre sus prácticas de evaluación de la resolución de problemas [Mathematics teachers’ statements about their problem-solving assessment practices]. Bolema, 30(55), 649-669. https://doi.org/10.1590/1980-4415v30n55a17
  • Chan, M. C. E., & Clarke, D. (2017). Structured affordances in the use of open-ended tasks to facilitate collaborative problem-solving. ZDM Mathematics Education, 49, 951-963. https://doi.org/10.1007/s11858-017-0876-2
  • Chanudet, M. (2016). Assessing inquiry-based mathematics education with both a summative and formative purpose. In P. Liljedahl, & M. Santos-Trigo (Eds.), Mathematical problem-solving: Current themes, trends, and research (pp. 177-207). Springer. https://doi.org/10.1007/978-3-030-10472-6_9
  • Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson.
  • Custodia, E., Márquez, C. & Sanmartí, N. (2015). Aprender a justificar científicamente a partir del estudio del origen de los seres [Learn to justify scientifically from the study of the origin of beings]. Enseñanza de las Ciencias [Science Education], 33(2), 133-155. https://doi.org/10.5565/rev/ensciencias.1316
  • Díaz, V., Aravena, M., & Flores, G. (2020). Solving problem types contextualized to the quadratic function and error analysis: A case study. EURASIA Journal of Mathematics, Science and Technology Education, 16(11), em1986. https://doi.org/10.29333/ejmste/8547
  • Drijvers, P., Kodde-Buitenhuis, H., & Doorman, M. (2019). Assessing mathematical thinking as part of curriculum reform in the Netherlands. Educational Studies in Mathematics, 102, 435-456. https://doi.org/10.1007/s10649-019-09905-7
  • Felmer, P., Liljedahl, P., & Koichu, B. (Eds). (2019). Problem-solving in mathematics instruction and teacher professional development. Springer. https://doi.org/10.1007/978-3-030-29215-7
  • Felmer, P & Perdomo-Díaz, J. (2016). Novice Chilean secondary mathematics teachers as problem solvers. In P. Felmer et al. (Eds.), Posing and solving mathematical problems. Research in Mathematics Education. Springer. https://doi.org/10.1007/978-3-319-28023-3_17
  • Goos, M. (2014). Mathematics classroom assessment. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 413-417). Springer. https://doi.org/10.1007/978-94-007-4978-8
  • Jones, I., & Alcock, L. (2014). Peer assessment without assessment criteria. Studies in Higher Education, 39(10), 1774-1787. https://doi.org/10.1080/03075079.2013.821974
  • Lavy, I., & Shriki, A. (2014). Engaging prospective teachers in peer assessment as both assessors and assessees: The case of geometrical proofs. International Journal for Mathematics Teaching and Learning.
  • Liljedahl, P. (2014). The affordances of using visually random groups in a mathematics classroom. In Y. Li, E. Silver, & S. Li (Eds.), Transforming mathematics instruction: Multiple approaches and practices. Springer. https://doi.org/10.1007/978-3-319-04993-9_8
  • Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem-solving in mathematics education. Springer. https://doi.org/10.1007/978-3-319-40730-2_1
  • Mangwende, E., & Maharaj, A. (2018). Secondary school mathematics teachers’ use of students’ learning styles when teaching functions: A case of Zimbabwean schools. EURASIA Journal of Mathematics, Science and Technology Education, 14(7), 3225-3233.https://doi.org/10.29333/ejmste/91679
  • Mason, J. (2015). When is a problem? Contribution in honor of Jeremy Kilpatrick. In E. Silver, & C. Keitel-Kreidt (Eds.), Pursuing excellence in mathematics education (pp. 55-69). Springer. https://doi.org/10.1007/978-3-319-11952-6_4
  • Mason, J. (2016). When is a problem …? “When” is actually the problem! In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and solving mathematical problems (pp. 233-285). Springer. https://doi.org/10.1007/978-3-319-28023-3_16
  • Mogessie, M. (2015). Peer assessment in higher education–twenty-first century practices, challenges and the way forward. Assessment & Evaluation in Higher Education, 42(2), 226-251. https://doi.org/10.1080/02602938.2015.1100711
  • Nieminen, J. H., & Atjonen, P. (2022). The assessment culture of mathematics in Finland: A student perspective. Research in Mathematics Education. https://doi.org/10.1080/14794802.2022.2045626
  • Nortvedt, G., Santos, L., & Pinto, J. (2016). Assessment for learning in primary school mathematics teaching: The case of Norway and Portugal. Assessment in Education: Principles, Policy & Practice, 23(3), 377-395. https://doi.org/10.1080/0969594X.2015.1108900
  • Olson, J. C., & Knott, L. (2013). When a problem is more than a teacher’s question. Educational Studies in Mathematics, 83, 27-36. https://doi.org/10.1007/s10649-012-9444-4
  • Polya, G. (1945). How to solve it. Princeton University Press. https://doi.org/10.1515/9781400828678
  • Sadler, P. M., & Good, E. (2006). The impact of self- and peer-grading on student learning. Educational Assessment, 11(1), 1-31. https://doi.org/10.1207/s15326977ea1101_1
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem-solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). MacMillan.
  • Seifert, T., & Feliks, O. (2018). Online self-assessment and peer- assessment as a tool to enhance student-teachers’ assessment skills. Assessment & Evaluation in Higher Education, 44(2), 169-185. https://doi.org/10.1080/02602938.2018.1487023
  • Shahbari, J. A., & Abu-Alhija, F. N. (2018). Does training in alternative assessment matter? The case of prospective and practicing mathematics teachers’ attitudes toward alternative assessment and their beliefs about the nature of mathematics. International Journal of Science and Mathematics Education, 16(7), 1315-1335. https://doi.org/10.1007/s10763-017-9830-6
  • Silver, E. A., & Mills, V. L. (Eds.) (2018). A fresh look at formative assessment in mathematics teaching. The National Council of Teachers of Mathematics.
  • Stake, R. E. (1995). The art of case study research. SAGE.
  • Suurtam, C., Koch, M., & Arden, A. (2010). Teachers’ assessment practices in mathematics: Classrooms in the context of reform. Assessment in Education: Principles, Policy & Practices, 17(4), 399-417. https://doi.org/10.1080/0969594X.2010.497469
  • Szetela, W., & Nicol, C. (1992). Evaluating problem-solving in mathematics. Educational Leadership, 49(8), 42-45.
  • Topping, K.J. (2009). Peer assessment. Theory into Practice, 48(1), 20-27. https://doi.org/10.1080/00405840802577569
  • Ukobizaba, F., Nizeyimana, G., & Mukuka, A. (2021). Assessment strategies for enhancing students’ mathematical problem-solving skills: A review of literature. EURASIA Journal of Mathematics, Science and Technology Education, 17(3), em1945. https://doi.org/10.29333/ejmste/9728
  • Watson, A. (2000). Mathematics teachers acting as informal assessors: Practices, problems and recommendations. Educational Studies in Mathematics, 41, 69-91. https://doi.org/10.1023/A:1003933431489
  • Wiliam, D., & Thompson, M. (2007). Integrating assessment with instruction: What will it take to make it work? In C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning (pp. 53-82). Erlbaum. https://doi.org/10.4324/9781315086545
  • Wyatt-Smith, C., Klenowski, V., & Gunn, S. (2010). The centrality of teachers’ judgement practice in assessment: A study of standards in moderation. Assessment in Education: Principles, Policy & Practice, 17(1), 59-75. https://doi.org/10.1080/09695940903565610
  • Zevenbergen, R. (2001). Peer assessment of student constructed posters: Assessment alternatives in pre-service mathematics education. Journal of Mathematics Teacher Education, 4, 95-113. https://doi.org/10.1023/A:1011401532410