Environmental benefits of microwave-assisted self-healing technology for pavements - A Life Cycle Assessment comparative study

  1. Rodríguez-Alloza, A.M. 1
  2. Gulisano, F. 2
  3. Garraín, D. 3
  1. 1 Departamento de Ingeniería Civil, Náutica y Marítima, Universidad de La Laguna (ULL)
  2. 2 Departamento de Ingeniería Civil: Transporte y Territorio, Universidad Politécnica de Madrid (UPM)
  3. 3 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT
Revista:
Materiales de construcción

ISSN: 0465-2746

Any de publicació: 2024

Volum: 74

Número: 354

Tipus: Article

DOI: 10.3989/MC.2024.367023 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Materiales de construcción

Resum

The maintenance and rehabilitation of roads is becoming a key challenge in the pavement industry to decrease the consumption of natural resources. Microwave-assisted self-healing technology extends the life-service of asphalt pavements for roads reducing the need for fossil fuels over its lifespan and saving the use of natural resources. This technique takes advantage of the thermoplastic and dielectric properties of asphalt mixtures that allows cracks to be closed, hence, heal and restore the asphalt mixtures mechanical behaviour without implementing more invasive traditional maintenance operations like milling and replacing the pavement. A Life-Cycle Assessment was carried out to determine the potential environmental benefits of using this technology quantifying its potential environmental impacts. Different scenarios in which the heating energy and the addition of slag varies has been evaluated and compared with a conventional road. Results shows that this technology could decrease a significant number of environmental impacts over the lifecycle.

Referències bibliogràfiques

  • SLOCAT. 2021. Transport and climate change global status report 2nd edition- tracking trends in a time of change: the need for radical action towards sustainable transport decarbonisation.
  • Chatti K, Zaabar I. 2012. Estimating the effects of pavement condition on vehicle operating costs. Transportation Research Board. Washington, DC: The National Academies Press.
  • Tian Y, B. Ma, Tian K, Li N, Zhou X. 2018. Study on components determination and performance evaluation of LS pre-maintenance agent. Appl. Sci. 8(6):889.
  • Flores G, Gallego J, Giuliani F, Autelitano F. 2018. Aging of asphalt binder in hot pavement rehabilitation. Constr. Build. Mater. 187:214–219.
  • Lou B, Liu Z, Sha A, Jia M, Li Y. 2020. Microwave absorption ability of steel slag and road performance of asphalt mixtures incorporating steel slag. Materials. 13(3):663.
  • Liang B, Lan F, Shi K, Qian G, Liu Z, Zheng J. 2020. Review on the self-healing of asphalt materials: Mechanism affecting factors assessments and improvements. Constr. Build. Mater. 266(Part A):120453.
  • García Á. 2012. Self-healing of open cracks in asphalt mastic. Fuel. 93:264–272.
  • Gallego J, del Val MA, Contreras V, Paez A. 2013. Heating asphalt mixtures with microwaves to promote self-healing. Constr. Build. Mater. 42:1–4.
  • Sun J, Wang W, Yue. Q. 2016. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials. 9(4).231.
  • Metaxas A, Meredith R. 1983. Industrial microwave heating London: The institution of electrical engineers. SBN 10: 0906048893 ISBN 13: 9780906048894.
  • Gallego J, Gulisano F, Trigos L, Apaza FR. 2021. Dielectric characterisation of asphalt mortars for microwave heating applications. Constr. Build. Mater. 308:125048.
  • Tang XW, Jiao SJ, Gao ZY, XL, Xu XL. 2008. Study of 5.8 ghz magnetron in asphalt pavement maintenance J. Electromagn. Waves Appl. 22(14–15):1975–1984.
  • Liu J, Wang Z, Guo H, Yan F. 2021. Thermal transfer characteristics of asphalt mixtures containing hot poured steel slag through microwave heating. J. Clean. Prod. 308:127225.
  • Li C, Wu S, Chen Z. Tao G, Xiao Y. 2018. Enhanced heat release and self-healing properties of steel slag filler based asphalt materials under microwave irradiation. Constr. Build. Mater. 193:32–41.
  • Arribas I, Santamaría A, Ruiz E, Ortega-López V, Manso JM. 2015. Electric arc furnace slag and its use in hydraulic concrete. Constr. Build. Mater. 90:68–79.
  • Vaiana R, Balzano F, Iuele T, Gallelli V. 2019. Microtexture performance of EAF slags used as aggregate in asphalt mixes: a comparative study with surface properties of natural stones. Appl. Sci. 9(15):3197.
  • Skaf M, Pasquini E, Revilla-Cuesta V, Ortega-López V. 2019. Performance and durability of porous asphalt mixtures manufactured exclusively with electric steel slags. Materials. 12(20):3306.
  • Skaf M, Manso JM, Aragón Á, Fuente-Alonso JA, Ortega-López V. 2017. EAF slag in asphalt mixes: A brief review of its possible re-use. Resour. Conserv. Recycl. 120:176–185.
  • Gulisano F, Crucho J, Gallego J, Picado-Santos L. 2020. Microwave healing performance of asphalt mixture containing Electric Arc Furnace (EAF). Slag and Graphene Nanoplatelets (GNPs). Appl. Sci. 10(4):1428.
  • Trigos L, Gallego J, Escavy JI, Picado-Santos L. 2021. Dielectric properties versus microwave heating susceptibility of aggregates for self-healing asphalt mixtures. Constr. Build. Mater. 293:123475.
  • Lou B, Sha A, Barbieri DM, Liu Z, Zhang F. 2021. Microwave heating properties of steel slag asphalt mixture using a coupled electromagnetic and heat transfer model. Constr. Build. Mater. 291:123248.
  • Norambuena-Contreras J, Gonzalez A, Concha JL, Gonzalez-Torre I, Schlangen E. 2018. Effect of metallic waste addition on the electrical thermophysical and microwave crack-healing properties of asphalt mixtures. Constr. Build. Mater. 187:1039–1050.
  • Tabaković A, O’Prey D, McKenna D, Woodward D. 2019. Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system. Case Stud. Constr. Mater. 10:e00233.
  • Norambuena-Contreras J, García A. 2016. Self-healing of asphalt mixture by microwave and induction heating. Mater. Des. 106:404–414.
  • Maliszewski M, Zofka A, Maliszewska D, Sybilski D, Salski B, Karpisz T, Rembelsk R. 2021. Full-scale use of microwave heating in construction of longitudinal joints and crack healing in asphalt pavements. Materials. 14(18):5159.
  • Gallego J, Gulisano F; Contreras V, Páez A. 2021. Optimising heat and re-compaction energy in the thermomechanical treatment for the assisted healing of asphalt mixtures. Constr. Build. Mater. 292:123431.
  • Gallego J, Gulisano F, Contreras V, Páez A. 2021. The crucial effect of re-compaction energy on the healing response of hot asphalt mortars heated by microwaves. Constr. Build. Mater. 285:122861.
  • Lizárraga JM, Gallego J. 2020. Self-healing analysis of half-warm asphalt mixes containing Electric Arc Furnace (EAF). Slag and Reclaimed Asphalt Pavement (RAP). Using a novel thermomechanical healing treatment. Materials. 13(11):2502.
  • Gulisano F, Gallego J. 2021. Microwave heating of asphalt paving materials: Principles current status and next steps. Constr. Build. Mater. 278:121993.
  • Ayar P, Moreno-Navarro F, Rubio-Gámez MC. 2016. The healing capability of asphalt pavements: a state of the art review. J. Clean. Prod. 113:28–40.
  • Santero NJ, Masanet E, Horvath A. 2011. Life-cycle assessment of pavements. Part I: Critical review. Resources Resour Conserv Recycl. 55(9–10):801–809.
  • Babashamsi P. Yusoff NI. Ceylan H, Nor NG, Jenatabadi HS. 2016. Sustainable development factors in pavement life cycle: Highway/airport review. Sustainability. 8(3):248.
  • Suwarto F, Tony Parry T, Airey G. 2023. Review of methodology for life cycle assessment and life cycle cost analysis of asphalt pavements. Road Mater. Pavement Des.
  • Mattinzioli T, Sol-Sanchez M, Moreno-Navarro F, Rubio-Gamez MC, Martinez G. 2022. Benchmarking the embodied environmental impacts of the design parameters for asphalt mixtures. SM&T. 32:e00395.
  • Mattinzioli T, Sol-Sanchez M, Jimenez del Barco Carrion A, Moreno-Navarro F, Rubio-Gamez MC, Martinez G. 2021. Analysis of the GHG savings and cost-effectiveness of asphalt pavement climate mitigation strategies. J. Clean. Prod. 320:128768.
  • Mejía-Arcila J. Valencia-Saavedra W, Mejía de Gutiérrez R. 2020. Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment. Mater. Construc. 70(340):e232.
  • Rodríguez-Alloza Heihsel M, Fry J, Gallego J, Geschke A, Wood R, Lenzen M. 2019. Consequences of long-term infrastructure decisions – the case of self-healing roads and their CO2 emissions. Environ. Res. Lett. 14:114040.
  • Wang T, Lee IS, Kendall A, Harvey J, Lee EB, Kim C. 2012. Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance. J. Clean. Prod. 33:86–96.
  • Butt AA, Birgisson B, Kringos N. 2012. Optimizing the highway lifetime by improving the self healing capacity of asphalt. Procedia - Social and Behavioral Sciences. 48:2190-2200.
  • ISO 14040. 2006. Environmental management – life cycle assessment – principles and framework: international standard 14040.
  • Merill D. 2005. Guidance on the development assessment and maintenance of long-life flexible pavements. Transport Research Laboratory. ISBN 1-84608-638-8.