Impact of Optical-to-Electrical Conversion on the Design of an End-to-End Learning RGB-LED-Based Visible Light Communication System

  1. Luna-Rivera, Jose Martin 4
  2. Rabadan, Jose 2
  3. Rufo, Julio 1
  4. Gutierrez, Carlos A. 4
  5. Guerra, Victor 3
  6. Perez-Jimenez, Rafael 2
  1. 1 Departamento en Ingeniería Industrial, Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain
  2. 2 Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC), Universidad de Las Palmas de Gran Canaria, PCT Tafira, 35017 Las Palmas, Spain
  3. 3 Pi Lighting, 1950 Sion, Switzerland
  4. 4 Faculty of Sciences, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78295, Mexico
Journal:
Photonics

ISSN: 2304-6732

Year of publication: 2024

Volume: 11

Issue: 7

Pages: 616

Type: Article

DOI: 10.3390/PHOTONICS11070616 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Photonics

Abstract

Visible Light Communication (VLC) is emerging as a promising technology to meet thedemands of fifth-generation (5G) networks and the Internet of Things (IoT). This study introducesa novel RGB-LED-based VLC system design that leverages autoencoders, addressing the oftenoverlooked impact of optical-to-electrical (O/E) conversion efficiency. Unlike traditional methods,our autoencoder-based system not only improves communication performance but also mitigates thenegative effects of O/E conversion. Through comprehensive simulations, we show that the proposedautoencoder structure enhances system robustness, achieving superior performance compared totraditional VLC systems. By quantitatively assessing the impact of O/E conversion—a criticalaspect previously overlooked in the literature—our work bridges a crucial gap in VLC research.This contribution not only advances the understanding of VLC systems but also provides a strongfoundation for future enhancements in 5G and IoT connectivity

Funding information

Funders

Bibliographic References

  • Khalighi, (2014), IEEE Commun. Surv. Tutor., 16, pp. 2231, 10.1109/COMST.2014.2329501
  • Pathak, (2015), IEEE Commun. Surv. Tutor., 17, pp. 2047, 10.1109/COMST.2015.2476474
  • Qin, (2019), IEEE Wirel. Commun., 26, pp. 93, 10.1109/MWC.2019.1800601
  • An, (2023), IEEE Access, 11, pp. 17441, 10.1109/ACCESS.2023.3245330
  • (2019). IEEE Standard for Local and Metropolitan Area Networks—-Part 15.7: Short-Range Optical Wireless Communications (Standard No. IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011)).
  • Das, (2012), Adv. Electr. Comput. Eng., 12, pp. 11, 10.4316/AECE.2012.04002
  • Drost, R.J., and Sadler, B.M. (2010, January 6). Constellation Design for Color-Shift Keying Using Billiards Algorithms. Proceedings of the 2010 IEEE Globecom Workshops, Miami, FL, USA.
  • Monteiro, (2014), J. Light. Technol., 32, pp. 2053, 10.1109/JLT.2014.2314358
  • Monteiro, E., and Hranilovic, S. (2012, January 3–7). Constellation Design for Color-Shift Keying Using Interior Point Methods. Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA.
  • Liang, (2017), J. Light. Technol., 35, pp. 3650, 10.1109/JLT.2017.2720579
  • (2022, November 09). IEEE 802.15.7-2011 and IEEE802.15.7r1, “IEEE 802.15 WPANTM”. Available online: https://www.ieee802.org/15/pub/IEEE%20802_15%20WPAN%2015_7%20Revision1%20Task%20Group.htm.
  • Koonen, (2018), J. Light. Technol., 36, pp. 1459, 10.1109/JLT.2017.2787614
  • Matheus, (2019), IEEE Commun. Surv. Tutor., 21, pp. 3204, 10.1109/COMST.2019.2913348
  • Dimian, (2017), IEEE Commun. Surv. Tutor., 19, pp. 2681, 10.1109/COMST.2017.2706940
  • Sklar, B., and Harris, F. (2020). Digital Communications: Fundamentals and Applications, Pearson. [3rd ed.].
  • Rappaport, T.S. (2002). Wireless Communications: Principles and Practice, Prentice-Hall. [2nd ed.].
  • Djordjevic, I.B. (2018). Advanced Optical and Wireless Communications Systems, Springer.
  • Gagliardi, R.M., and Karp, S. (1995). Optical Communications, Wiley. [2nd ed.].
  • Li, (2022), Opt. Express, 30, pp. 28905, 10.1364/OE.464277
  • Hoydis, (2017), IEEE Trans. Cogn. Commun. Netw., 3, pp. 563, 10.1109/TCCN.2017.2758370
  • Chi, (2020), J. Commun. Inf. Netw., 5, pp. 302, 10.23919/JCIN.2020.9200893
  • Lee, (2018), Opt. Express, 26, pp. 6222, 10.1364/OE.26.006222
  • Pepe, (2020), OSA Contin., 3, pp. 473, 10.1364/OSAC.381791
  • Zhang, (2020), IEEE Photonics J., 12, pp. 7902716
  • Zou, (2020), J. Light. Technol., 38, pp. 5733, 10.1109/JLT.2020.3004664
  • Ulkar, (2020), J. Light. Technol., 38, pp. 5937, 10.1109/JLT.2020.3006827
  • Shrivastava, (2020), IEEE Access, 8, pp. 149412, 10.1109/ACCESS.2020.3014427
  • Mitra, (2016), IEEE Photonics Technol. Lett., 28, pp. 1053, 10.1109/LPT.2016.2528168
  • Laakso, M., Dowhuszko, A.A., and Wichman, R. (2022, January 4–6). Predistortion of OFDM Signals for VLC Systems Using Phosphor-Converted LEDs. Proceedings of the 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Finland.
  • Lizarraga, E.M., Wayar, J., Linares, M.F., and Dowhuszko, A.A. (2021, January 17–19). Effects of LED Non-linear Response and Waveform Settings on Multi-Cell VLC System Deployments. Proceedings of the 2021 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic.
  • Hamamatsu (2023, December 01). Si PIN Photodiodes (S1223 Series). Available online: https://www.hamamatsu.com/eu/en/product/optical-sensors/photodiodes/si-photodiodes/S1223-01.html.
  • Wyszecki, G., and Stiles, W.S. (1982). Color Science, Wiley.
  • Guerra, (2015), IET Optoelectron., 9, pp. 191, 10.1049/iet-opt.2014.0124
  • McCamy, (1992), Color Res. Appl., 17, pp. 142, 10.1002/col.5080170211