Injusticia epistémica y reproducción de sesgos de género en la inteligencia artificial

  1. Perdomo Reyes, Inmaculada 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Zeitschrift:
CTS: Revista iberoamericana de ciencia, tecnología y sociedad

ISSN: 1668-0030 1850-0013

Datum der Publikation: 2024

Ausgabe: 19

Nummer: 56

Seiten: 89-100

Art: Artikel

DOI: 10.52712/ISSN.1850-0013-555 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: CTS: Revista iberoamericana de ciencia, tecnología y sociedad

Ziele für nachhaltige Entwicklung

Zusammenfassung

As IAs generativas reificam e fazem circular as lacunas e preconceitos de género existentes, mas conferem-lhes um verniz de objetividade e neutralidade, apesar da opacidade dos processos e da sua capacidade de reproduzir e aumentar situações de desigualdade e exclusão. A situação é de clara injustiça algorítmica e epistémica e confronta-nos com grandes desafios nas nossas democracias modernas. Com exemplos de casos específicos e com a revisão crítica de textos importantes que oferecem chaves interpretativas para compreender o impacto do rápido desenvolvimento e implementação dessas ferramentas, traçaremos algumas diretrizes que exigirão estudos mais aprofundados, mas que visam coletar, na perspetiva da ciência, tecnologia e estudos de gênero, novos desafios para o desenvolvimento da disciplina e ver as possibilidades de uma IA feminista.

Bibliographische Referenzen

  • Coeckelbergh, M. (2021). Ética de la Inteligencia Artificial. Madrid: Cátedra.
  • Crawford, K. (2021). Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. New Haven: Yale University Press.
  • Criado Pérez, C. (2019). Invisible Women: Exposing Data Bias in a World Designed for Men. Londres: Chatto & Windus.
  • Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. En K. Martin (Comp.), Ethics of Data and Analytics. Concepts and cases (296-299). CRC Press Taylor & Francis Group.
  • Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police and Punish the Poor. Nueva York: St. Martin’s Press
  • Fricker, M. (2007). Epistemic Injustice. Power & the Ethics of Knowing. Oxford: Oxford University Press.
  • Gray, M. & Suri, S. (2019). Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass. Boston: Harcourt.
  • Han, B. C. (2022). Infocracia. Madrid: Taurus.
  • Hayles, N. K. (2023). Technosymbiosis: Figuring (Out) Our Relations to AI. En Feminism and AI. En J. Browne, S. Cave, E. Drage & K. McInerney (Eds.), Feminist AI: Critical Perspectives on Algorithms, Data, and Intelligent Machines (1-18). Oxford: Oxford University Press.
  • Jasanoff, S. (2004). States of Knowledge. The Co-production of Science and Social Order. Londres: Routledge.
  • Jasanoff, S. (2016). The Ethic of Invention. Technology and The Human Future. Nueva York: W.W. Norton & Company Ltd.
  • Larson, E. J. (2022). El mito de la Inteligencia Artificial. Por qué las máquinas no pueden pensar como nosotros lo hacemos. Barcelona: Shackleton Books.
  • O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Londres: Allen Lane.
  • Perdomo, I. (2024). Tecnociencia feminista. Una propuesta de demarcación. Revista Iberoamericana de Ciencia, Tecnología y Sociedad -CTS, 19(55), 127-143. DOI: https://doi.org/10.52712/issn.1850-0013-424.
  • Scavino, D. (2022). Máquinas filosóficas. Problemas de cibernética y desempleo. Barcelona: Anagrama.
  • Toupin, S. (2024). Shaping feminist artificial intelligence. New Media & Society, 26(1), 580-595. Sage Journals. DOI: https://doi.org/10.1177/14614448221150776.
  • Van Noorden, R. & Perkel, J. (2023). AI and Science: what 1600 researchers think. Nature, vol. 621, 28 de septiembre de 2023, 672-675. DOI: https://doi.org/10.1038/d41586-023-02980-0.
  • Wajcman, J. (2010). Feminist Theories of Technology. Cambridge Journal of Economics, 34(1), 144.
  • Wajcman, J. & Young, E. (2023). Feminism Confronts AI. En Feminism and AI. En J. Browne, S. Cave, E. Drage & K. McInerney (Eds.), Feminist AI: Critical Perspectives on Algorithms, Data, and Intelligent Machines (47-64). Oxford: Oxford University Press.
  • Young, E., Wajcman, J. & Sprejer, L. (2023). Mind the gender gap: inequalities in the emergent professions of artificial intelligence (AI) and data science. New Technology, Work and Employment, 1-24. DOI: https://doi.org/10.1111/ntwe.12278.