Covarianza dinámica con sensor Doppler para la estimación de errores no sistemáticos

  1. Toledo Carrillo, Jonay Tomas 1
  2. Rodriguez, Alexis 1
  3. Fariña, Bibiana 1
  4. Abreu, David 1
  5. Acosta, Leopoldo 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Año de publicación: 2024

Número: 45

Tipo: Artículo

DOI: 10.17979/JA-CEA.2024.45.10946 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Una de las claves de una navegación segura para un robot móvil es el sistema de localización. Este tiene que obtener una una posición lo más precisa posible en el entorno del robot. Para conseguir esto, se utiliza una combinación de sensores diferentes para mejorar el resultado global de la localización, caracterizando cada medida con su precisión. Uno de los sensores más importantes para ello es la odometría, sin embargo es muy difícil caracterizar la precisión del sistema odométrico en tiempo real. En este artículo se presenta un sensor basado en efecto doppler ultrasónico para realizar una medida de validación del resultado del sensor odométrico y de esta forma ajustar la covarianza de este dinámicamente. De esta forma se consigue una localización final más precisa.

Referencias bibliográficas

  • Abreu, D., Toledo, J., Codina, B., Suárez, A., 2021. Low-cost ultrasonic range improvements for an assistive device. Sensors 21 (12). DOI: 10.3390/s21124250 DOI: https://doi.org/10.3390/s21124250
  • Alatise, M. B., Hancke, G. P., 2017. Pose estimation of a mobile robot based on fusion of imu data and vision data using an extended kalman filter. Sensors 17 (10). DOI: 10.3390/s17102164 DOI: https://doi.org/10.3390/s17102164
  • Arnay, R., Hernández-Aceituno, J., Toledo, J., Acosta, L., May 2018. Laser and optical flow fusion for a non-intrusive obstacle detection system on an intelligent wheelchair. IEEE Sensors Journal 18 (9), 3799–3805. DOI: 10.1109/JSEN.2018.2815566 DOI: https://doi.org/10.1109/JSEN.2018.2815566
  • Barrios, C., Motai, Y., Huston, D., Dec 2016. Intelligent forecasting using dead reckoning with dynamic errors. IEEE Transactions on Industrial Informatics 12 (6), 2217–2227. DOI: 10.1109/TII.2015.2514086 DOI: https://doi.org/10.1109/TII.2015.2514086
  • Censi, A., 2008. An icp variant using a point-to-line metric. In: 2008 IEEE International Conference on Robotics and Automation. pp. 19–25. DOI: 10.1109/ROBOT.2008.4543181 DOI: https://doi.org/10.1109/ROBOT.2008.4543181
  • Faria, B. M., Reis, L. P., Lau, N., 2014. A survey on intelligent wheelchair prototypes and simulators. In: Rocha, Á., Correia, A. M., Tan, F. . B., Stroetmann, K. . A. (Eds.), New Perspectives in Information Systems and Technologies, Volume 1. Springer International Publishing, Cham, pp. 545–557. DOI: https://doi.org/10.1007/978-3-319-05951-8_52
  • Fariña, B., Toledo, J., Acosta, L., 2023. Augmented kalman filter design in a localization system using onboard sensors with intrinsic delays. IEEE Sensors Journal 23 (11), 12105–12113. DOI: 10.1109/JSEN.2023.3269126 DOI: https://doi.org/10.1109/JSEN.2023.3269126
  • Fariña, B., Toledo, J., Acosta, L., 2024. Improving odometric sensor performance by real-time error processing and variable covariance. Mechatronics 98, 103123. DOI: 10.1016/j.mechatronics.2023.103123 DOI: https://doi.org/10.1016/j.mechatronics.2023.103123
  • Fariña, B., Toledo, J., Estevez, J. I., Acosta, L., 2020. Improving robot localization using doppler-based variable sensor covariance calculation. Sensors 20 (8). DOI: 10.3390/s20082287 DOI: https://doi.org/10.3390/s20082287
  • Huang, T., Jiang, H., Zou, Z., Ye, L., Song, K., 2019. An integrated adaptive kalman filter for high-speed uavs. Applied Sciences 9 (9). DOI: 10.3390/app9091916 DOI: https://doi.org/10.3390/app9091916
  • Kalman, R. E., 03 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering 82 (1), 35–45. DOI: 10.1115/1.3662552 DOI: https://doi.org/10.1115/1.3662552
  • Kubelka, V., Oswald, L., Pomerleau, F., Colas, F., Svoboda, T., Reinstein, M., 2015. Robust data fusion of multimodal sensory information for mobile robots. Journal of Field Robotics 32 (4), 447–473. DOI: 10.1002/rob.21535 DOI: https://doi.org/10.1002/rob.21535
  • Leaman, J., La, H. M., Aug 2017. A comprehensive review of smart wheelchairs: Past, present, and future. IEEE Transactions on Human-Machine Systems 47 (4), 486–499. DOI: 10.1109/THMS.2017.2706727 DOI: https://doi.org/10.1109/THMS.2017.2706727
  • Michaelis, M., Berthold, P., Meissner, D., Wuensche, H., Oct 2017. Heterogeneous multi-sensor fusion for extended objects in automotive scenarios using gaussian processes and a gmphd-filter. In: 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF). pp. 1–6. DOI: 10.1109/SDF.2017.8126351 DOI: https://doi.org/10.1109/SDF.2017.8126351
  • Ravikumar, P., Wainwright, M. J., Raskutti, G., Yu, B., 2011. High-dimensional covariance estimation by minimizing l 1 -penalized log-determinant divergence. Electron. J. Statist. 5, 935–980. DOI: 10.1214/11-EJS631 DOI: https://doi.org/10.1214/11-EJS631
  • Toledo, J., Piñeiro, J. D., Arnay, R., Acosta, D., Acosta, L., 2018. Improving odometric accuracy for an autonomous electric cart. Sensors 18 (1). DOI: 10.3390/s18010200 DOI: https://doi.org/10.3390/s18010200