Mixing transcutaneous vagal nerve stimulation and galvanic cutaneous stimulation to decrease simulator adaptation syndrome

  1. Gálvez-García, Germán 12
  2. Mena-Chamorro, Patricio 1
  3. Espinoza-Palavicino, Tomás 1
  4. Romero-Arias, Tatiana 3
  5. Barramuño-Medina, Mauricio 1
  6. Bascour-Sandoval, Claudio 1
  1. 1 Universidad de La Frontera
    info

    Universidad de La Frontera

    Temuco, Chile

    ROR https://ror.org/04v0snf24

  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  3. 3 Universidad Europea de Canarias
    info

    Universidad Europea de Canarias

    Orotava, España

    ROR https://ror.org/051xcrt66

Revue:
Frontiers in Psychology

ISSN: 1664-1078

Année de publication: 2024

Volumen: 15

Type: Article

DOI: 10.3389/FPSYG.2024.1476021 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Frontiers in Psychology

Résumé

Purpose: Simulator Adaptation Syndrome arises from a perceptual discordancebetween expected and actual motion, giving rise to symptoms such asnausea and disorientation. This research focused on determining the benefitof Transcutaneous Vagal Nerve Stimulation (tVNS) and Galvanic CutaneousStimulation (GCS), where both were applied in conjunction, as compared totheir administration in isolation, to decrease Simulator Adaptation Syndrome(SAS).Method: A driving simulation study was proposed where SAS, body balance,and driving performance were measured. These measurements were takenduring seven different stimulation scenarios with a baseline condition withoutstimulation compared against tVNS and GCS conditions.Results: The main result showed that the combination of tVNS and GCS reducedSAS and improved body balance and driving performance more successfullythan their administration in isolation.Conclusion: Similar neuromodulation in the temporoparietal junction isproposed to mitigate SAS for GCS and tVNS (although additional explanationsare discussed). Applying both techniques simultaneously is encouraged todecrease SAS in future interventions.

Références bibliographiques

  • Albayay, (2022), Chemosens. Percept., 15, pp. 35, 10.1007/s12078-021-09292-5
  • Albayay, (2019), Brain Cogn., 137, pp. 1, 10.1016/j.bandc.2019.103618
  • Badran, (2018), Brain Stimul., 11, pp. 492, 10.1016/j.brs.2017.12.009
  • Beste, (2016), Brain Stimul., 9, pp. 811, 10.1016/j.brs.2016.07.004
  • Borges, (2020), Front. Neurosci., 14, pp. 523, 10.3389/fnins.2020.00523
  • Bos, (2015), J. Vestib. Res., 25, pp. 23, 10.3233/VES-150541
  • Colzato, (2018), Neuropsychologia, 111, pp. 72, 10.1016/j.neuropsychologia.2018.01.003
  • D’Amour, (2017), Exp. Brain Res., 235, pp. 2811, 10.1007/s00221-017-5009-1
  • Donaldson, (2015), Neurosci. Biobehav. Rev., 55, pp. 547, 10.1016/j.neubiorev.2015.05.017
  • Dużmańska, (2018), Front. Psychol., 9, pp. 1, 10.3389/fpsyg.2018.02132
  • Espinoza-Palavicino, (2023), Appl. Ergon., 107, pp. 103921, 10.1016/j.apergo.2022.103921
  • Fallgatter, (2003), J. Neural Transm., 110, pp. 1437, 10.1007/s00702-003-0087-6
  • Fang, (2016), Biol. Psychiatry., 79, pp. 266, 10.1016/j.biopsych.2015.03.025
  • Farmer, (2021), Front. Hum. Neurosci., 14, pp. 1, 10.3389/fnhum.2020.568051
  • Faul, (2009), Behav. Res. Methods, 41, pp. 1149, 10.3758/BRM.41.4.1149
  • Fischer, (2018), Cogn. Affect. Behav. Neurosci., 18, pp. 680, 10.3758/s13415-018-0596-2
  • Gálvez-García, (2015), Ergonomics, 58, pp. 1365, 10.1080/00140139.2015.1005168
  • Gálvez-García, PLoS One, 15, pp. 1, 10.1371/journal.pone.0240627
  • Gálvez-García, (2017), Appl. Ergon., 58, pp. 13, 10.1016/j.apergo.2016.05.004
  • Gálvez-García, Appl. Ergon., 82, pp. 1, 10.1016/j.apergo.2019.102931
  • Gálvez-García, (2015), Hum. Factors, 57, pp. 649, 10.1177/0018720814554948
  • Gavgani, (2017), Auton. Neurosci., 203, pp. 41, 10.1016/j.autneu.2016.12.004
  • George, (2000), Biological Psychiatry., 47, pp. 287, 10.1016/s0006-3223(99)00308-x
  • Golding, (1998), Brain Res. Bull., 47, pp. 507, 10.1016/S0361-9230(98)00091-4
  • Grüsser, (1990), J. Physiol., 430, pp. 537, 10.1113/jphysiol.1990.sp018306
  • Guariglia, (2000), Neuroreport, 11, pp. 1945, 10.1097/00001756-200006260-00027
  • Helland, (2016), Accid. Anal. Prev., 94, pp. 180, 10.1016/j.aap.2016.05.008
  • Heutink, (2019), Ergonomics, 62, pp. 65, 10.1080/00140139.2018.1518543
  • Iskander, (2019), Transp. Res. F Traffic Psychol. Behav., 62, pp. 716, 10.1016/j.trf.2019.02.020
  • Jongkees, (2018), Front. Psychol., 9, pp. 1, 10.3389/fpsyg.2018.01159
  • Kennedy, (1993), Int. J. Aviat. Psychol., 3, pp. 203, 10.1207/s15327108ijap0303_3
  • Keshavarz, (2022), Curr. Opin. Neurol., 35, pp. 107, 10.1097/WCO.0000000000001018
  • Keshavarz, (2018), Transp. Res. F Traffic Psychol. Behav., 54, pp. 47, 10.1016/j.trf.2018.01.007
  • Keshavarz, (2015), Exp. Brain Res., 233, pp. 1353, 10.1007/s00221-015-4209-9
  • Kim, (2009), Revista Colombiana de Ciencias Pecuarias, 22, pp. 591, 10.17533/udea.rccp.324493
  • Kraus, (2013), Brain Stimul., 6, pp. 798, 10.1016/j.brs.2013.01.011
  • Kuiper, (2018), Appl. Ergon., 68, pp. 169, 10.1016/j.apergo.2017.11.002
  • Lazorthes, (1981), Le système nerveux périphérique
  • Lucot, (1998), J. Vestib. Res., 8, pp. 61, 10.3233/VES-1998-8109
  • Marano, (2022), Mov. Disord., 37, pp. 2163, 10.1002/mds.29166
  • Mwange, (2022), Hum. Fact. Simulat., 30, pp. 35, 10.54941/ahfe1001489
  • Nemeroff, (2006), Neuropsychopharmacology, 31, pp. 1345, 10.1038/sj.npp.1301082
  • Pérennou, (2001), Arch. Phys. Med. Rehabil., 82, pp. 440, 10.1053/apmr.2001.21986
  • Raedt, (2011), J. Neurochem., 117, pp. 461, 10.1111/j.1471-4159.2011.07214.x
  • Reason, (1975), Motion sickness
  • Reed-Jones, (2009), Proceedings of the 5th international driving symposium on human factors in driver assessment, training and vehicle design, pp. 276
  • Reed-Jones, (2008), Neurosci. Lett., 435, pp. 204, 10.1016/j.neulet.2008.02.047
  • Roosevelt, (2006), Brain Res., 1119, pp. 124, 10.1016/j.brainres.2006.08.048
  • Riccio, (1991), Ecol. Psychol., 3, pp. 195, 10.1207/s15326969eco0303_2
  • Saredakis, (2020), Front. Hum. Neurosci., 14, pp. 96, 10.3389/fnhum.2020.00096
  • Sheehan, (1998), J. Clin. Psychiatry, 59, pp. 22
  • Sigurdsson, (2021), Expert Review of Medical Devices, 18, pp. 971, 10.1080/17434440.2021.1969913
  • Sommer, (2023), Neuropsychologia, 187, pp. 108614, 10.1016/j.neuropsychologia.2023.108614
  • Spielberger, (1970), Manual for the state-trait anxietry, inventory
  • Stanney, (1997), Proceedings of the human factors and ergonomics society annual meeting, 41(2), pp. 1138
  • Sugiuchi, (2005), Ann. N. Y. Acad. Sci., 1039, pp. 111, 10.1196/annals.1325.011
  • Takeuchi, (2018), Cyberpsychol. Behav. Soc. Netw., 21, pp. 381, 10.1089/cyber.2017.0499
  • (2012), MATLAB and statistics toolbox release 2012b
  • Ventre-Dominey, (2014), Front. Integr. Neurosci., 8, pp. 53, 10.3389/fnint.2014.00053
  • Warren, (2018), Brain Stimul., 12, pp. 635, 10.1016/j.brs.2018.12.224
  • Yen Pik Sang, (2003), Aviat. Space Environ. Med., 74, pp. 998
  • Zhang, (2023), CNS Neurosci Ther, 29, pp. 3889, 10.1111/cns.14309