Dataset for: Bayesian deep learning for cosmic volumes with modified gravity

  1. García-Farieta, Jorge E. 12
  2. Hortua, Hector Javier 3
  3. Kitaura, Francisco 12
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  2. 2 Instituto de Astrofísica de Canarias
    info

    Instituto de Astrofísica de Canarias

    Santa Cruz de Tenerife, España

    ROR https://ror.org/03cmntr54

  3. 3 Universidad del Bosque

Editor: Zenodo

Any de publicació: 2024

Tipus: Dataset

CC BY 4.0

Resum

The dataset encompasses data utilized in the scientific manuscript titled "Bayesian Deep Learning for Cosmic Volumes with Modified Gravity" available at https://arxiv.org/abs/2309.00612. It includes 3D overdensity fields and power spectra for 2500 simulations of modified gravity (MG) conducted using MG-PICOLA, encompassing 256 Mpc/h side cubical volumes with 128^3 particles. These simulations were employed to derive cosmological parameters through deep neural networks equipped with uncertainty estimations. We evaluated Bayesian neural networks (BNNs) with an enriched approximate posterior distribution, considering two cases: one with a single Bayesian last layer (BLL) and another with Bayesian layers at all levels (FullB). This research contributes to establishing a framework for extracting cosmological parameters from complete, small cosmic volumes extending into the highly nonlinear regime.