Costs for conventional and renewable fuels and electricity in the worldwide transport sectora mean-variance portfolio approach

  1. Guerrero-Lemus, Ricardo
  2. Marrero, Gustavo A.
  3. Puch, Luis A.
Revista:
Documentos de Trabajo (ICAE)

ISSN: 2341-2356

Año de publicación: 2012

Número: 18

Páginas: 1-31

Tipo: Documento de Trabajo

Otras publicaciones en: Documentos de Trabajo (ICAE)

Resumen

In this paper we analyze the role of changes in the fuel mix on emissions reduction and the diversification of risks associated to rising prices of energy. To this purpose we evaluate the average cost and the cost volatility of alternative fuel combinations in the road transport sector by means of the Mean-Variance Portfolio Theory. The results suggest big gains in diversification of risks and emissions reduction associated with shifts away the current fuel mix, which is more than 90% concentrated worldwide in fossil fuels. Those shifts are discussed vis à vis the policy recommendations of the International Energy Agency on fuel use in the transport sector, and both the business as usual and the low carbon scenarios of the European Commission. In particular, shifting toward an efficient system would involve optimizing the use of biofuels (mostly from endogenous feedstock), with second generation biofuels taking the lead in the long-run, and this combined with electricity from clean sources. This scenario would mean reducing cost volatility by more than 50% as well as CO2 emissions by more than 30% in the long-run.

Referencias bibliográficas

  • Ajanovic A, Haas R. Economic challenges for the future relevance of biofuels in transport in EU countries. Energy 2010; 35: 3340-48.
  • Arnesano M, Carlucci AP, Laforgia D. Extension of portfolio theory application to energy planning problem. The Italian case. Energy 2011; doi: 10.1016/j.energy.2011.06.053.
  • Atkeson, A, Kehoe, PJ. Models of energy use: putty-putty versus putty-clay. American Economic Review 1999; 89: 1028-1043.
  • Awerbuch S, Berger M. Applying portfolio theory to UE electricity planning and policy-making, IEA/EET, Paris (2003). Available from http://www.awerbuch.com/shimonpages/shimondocs/iea-portfolio.pdf
  • Awerbuch S. Portfolio-based electricity generation planning: policy implications for renewables and energy security. Mitigation and Adaptation Strategies for Global Change 2006; 11: 693-710.
  • Biodiesel handling and use guide, 4th edition. National Renewable Energy Laboratory. US Department of Energy; 2009.
  • Böhringer C, Löschel A, Moslener U, Rutherford TF. EU climate policy up to 2020: An economic impact assessment. Energy Economics 2009; 31: S295-S305.
  • Commission Green Paper: a European Strategy for Sustainable, Competitive and Secure Energy. European Commission; 2006.
  • CONCAWE (JEC). Well-to-Wheels analysis of future automotive fuels and powertrains in the European context. Well-to-wheels report, Version 2c.: JRC, EUCAR, CONCAWE (JEC). Brussels, Belgium; 2007.
  • CONCAWE (JEC). Well-to-wheels analysis of future automotive fuels and powertrains in the European context. Well-to-tank report version 3.0 November 2009. WTT App.2—Description and detailed energy and GHG balance of individual pathways. JRC, EUCAR, CONCAWE (JEC). Brussels, Belgium; 2008.
  • Creutziga F, Heb D. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transportation Research Part D: Transport and Environment 2009; 14: 120–131.
  • DEFRA. Estimating the cost-effectiveness of biofuels. Department for Environment, Food and Rural Affairs (DEFRA), London, UK; 2008.
  • Department for Transport. International resource costs of biodiesel and bioethanol. Department for Transport, London, UK; 2006.
  • Díaz, A, Puch, LA, Guilló, MD. Costly capital reallocation and energy use. Review of Economic Dynamics 2004; 7: 494-518.
  • EC. A roadmap for moving to a competitive low carbon economy in 2050. 2011. See also: http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri =SEC:2011:0288:FIN:EN:PDF
  • Energy Charter Secretariat. Driving without petroleum? A comparative guide to biofuels, gas-to-liquids and coal-to-liquids as fuels for transportation. Energy Charter Secretariat, Brussels, Belgium; 2007.
  • Energy Information Administration. Annual Energy Outlook 2011. US Department of Energy; 2011.
  • Environmental Protection Agency (USA). http://www.epa.gov/oms/climate/420f05001.htm#carbon
  • European Central Bank. Euro exchange rates. Available from: http://www.ecb.int/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html
  • Fama EF, French KR. The cross-section of expected stock returns. Journal of Financial Economics 1993; 33: 3–56.
  • Foust, TD. Advanced drop-in biofuels. Presented at Rethinking Energy and Climate Strategies for Transportation – Thirteenth Biennial Conference on Transportation and Energy, Pacific Grove, CA, September 1; 2011.
  • Fuel Economy Guide. Model Year 2012. US Department of Energy and US Environmental Protection Agency; 2011.
  • Guerrero-Lemus, R, Martínez-Duart, JM. Updated hydrogen production costs and parities for conventional and renewable technologies. International Journal of Hydrogen Energy 2010; 35: 3929-3936.
  • Gül T, Kypreos S, Turton H, Barreto L. An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM). Energy 2009; 34: 1423-37.
  • Hodrick, RJ, Prescott, EC. Postwar U.S. business cycles: an empirical investigation. Journal of Money, Credit and Banking 1997; 29: 1-16.
  • IEA. Bioenergy – A sustainable and reliable energy source. IEA Bioenergy; 2009.
  • IEA. Bioenergy, land use change and climate change mitigation. IEA Bioenergy; 2011.
  • IEA. Energy Technology Perspectives 2010. IEA; 2010.
  • IEA. Key World Energy Statistics 2011, 2010, 2009, 2008, 2007. IEA; 2007-2011.
  • IEA. Sustainable Production of Second-Generation Biofuels. IEA; 2010.
  • IEA. World Energy Outlook 2008, OECD/IEA Paris, France; 2008.
  • International Energy Outlook 2006. Office of Integrated Analysis and Forecasting, U.S. Department of Energy, EIA-DOE, Washington, DC; 2006.
  • IPCC. Fourth Assessment Report: Climate Change 2007 (AR4); 2008.
  • Juul N, Meibom P. Optimal configuration of an integrated power and transport system. Energy 2011; 36: 3523-30.
  • Kilian, L. The economic effects of energy price shocks. Journal of Economic Literature 2008; 46: 871-909.
  • Li S. Reduction emissions from transport sector - EU action against climate change. Modern Applied Science 2009; 3: 56-62.
  • Markowitz HM. Portfolio selection. Journal of Finance 1952; 7: 77-91.
  • Marrero G. Greenhouse gases emissions, growth and the energy mix in Europe, Energy Economics 2010; 32: 1356-1363.
  • Marrero GA, Ramos-Real FJ. Electricity generation cost in isolated system: the complementarities of natural gas and renewables in the Canary Islands. Sustainable and Renewable Energy Reviews 2010; 14: 2808-2818.
  • Merton RC. An analytic derivation of the efficient portfolio frontier. The Journal of Finance and Quantitative Analysis 1972; 7: 1851-1872.
  • Moselle, B. Renewable generation and security of supply, Harnessing Renewable Energy in Electricity Power Systems, Ch. 4. Earthscan; 2010.
  • OECD. Biofuel support policies: An economic assessment. OECD, Paris, France; 2008.
  • OECD. Economic assessment of biofuel support policies. OECD, Paris, France; 2008.
  • Poudenx. P. The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation. Transportation Research Part A 2008; 42: 901–909.
  • Ríos-Rull, JV and Rodríguez-López, J. Cars, Mimeo; 2011.
  • Roques FA, Newbery DM, Nuttall WJ. Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach. Energy Economics 2008; 30: 1831-1849.
  • Schade B, Wiesenthal T. Biofuels: A model based assessment under uncertainty applying the Monte Carlo method. Journal of Policy Modeling 2011; 33: 92-126
  • US Department of Energy. Energy Information Administration; several years.
  • Van-Zijl T. Risk decomposition: variance or standard deviation - a reexamination and extension. Journal of Financial and Quantitative Analysis 1987; 22: 237-247.
  • Wiser R, Bachrach D, Bolinger M, Golove W. Comparing the risk profiles of renewable and natural gas-fired electricity contracts. Renewable and Sustainable Energy Review 2004; 8: 335-336.
  • Wright L, Fulton L. Climate Change Mitigation and Transport in Developing Nations. Transport Reviews 2005; 25: 691–717.