Reconocimiento genérico de objetos aplicando mecánicas presentes en el córtex visual humano, fusionando información del espectro visible y de profundidad
- Leopoldo Acosta Sánchez Director
- Marta Sigut Saavedra Codirectora
Universidad de defensa: Universidad de La Laguna
Fecha de defensa: 23 de mayo de 2014
- Lorenzo Moreno Ruiz Presidente/a
- Javier Sánchez Medina Secretario/a
- María Tomás Rodríguez Vocal
Tipo: Tesis
Resumen
Los humanos somos capaces de reconocer objetos de entre decenas de miles de categorías y con grandes niveles de invarianza frente a todo tipo de transformaciones, como son rotaciones, traslaciones, cambios de escala, cambios de iluminación, etc. Ya que somos capaces de llevar a cabo un reconocimiento de objetos robusto, en los últimos años se han venido estudiando los procesos que tienen lugar en el sistema visual humano para intentar replicar las capacidades de éste en sistemas artificiales. En esta tesis se ha desarrollado un sistema de reconocimiento de objetos aplicando modelos basados en el córtex visual humano que no sólo tiene en cuenta información del espectro visible sino también información de profundidad. Este sistema se ha aplicado con éxito a escenas de interiores para reconocer una amplia variedad de clases de objetos. Para acelerar el proceso de detección, se ha implementado un mecanismo atencional basado en los contornos 3D de la escena. Este mecanismo determina las posiciones donde se va a clasificar la escena. Los resultados de la clasificación se transforman en probabilidades que se integran en una nube de puntos 3D para determinar el etiquetado de la escena. Finalmente se ajustan mallas 3D a los diferentes objetos detectados para obtener una representación adecuada de su forma y su posición dentro de la escena.