Evaluación asistida a través de ordenador de procesos cognitivos en niños con y sin dificultades de aprendizaje en matemáticas

  1. Rodríguez Rodríguez, Cristina
  2. Jiménez González, Juan Eugenio
  3. Bisschop, Elaine
  4. Villarroel Ramírez, Rebeca José
  5. Peake, Christian
Revista de Psicología y Educación

ISSN: 1699-9517

Year of publication: 2013

Volume: 8

Issue: 2

Pages: 81-94

Type: Article

More publications in: Revista de Psicología y Educación

Bibliographic References

  • Baddeley, A. D. (1986). Working Memory. Oxford: Oxfor University Press.
  • Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math learning disorder: Incidence in a population-based birth cohort, 1976-1982, Rochester, Minnesota. Ambulatory Pediatrics, 5, 281-289.
  • Bermejo, V. y Lago, O. (1991). Aprendiendo a contar. Su relevancia en la comprensión y fundamentación de los primeros conceptos matemáticos. Madrid: C.I.D.E..
  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual Differences in pure numerical estimation. Developmental Psychology, 41, 189-201.
  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child and Psychiatry, 46, 3-18.
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506.
  • Fuchs, L. S. (2002). Three conceptualizations of “treatment” in a responsiviness to treatment fra- mework for L. D. identification. In R. Bradley, L. Danielson, & D. P. Hallahan (Eds.), Identification of learning disabilities: Research to practice (pp. 521-529). Mahwah, NJ: Erlbaum.
  • Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of EducationalPsychology, 97, 493-513.
  • García, A., Jiménez, J. E., & Hess, S. (2006). Solving Arithmetic Word Problems: An Analysis of Classification as a Function of Difficulty in Children With and Without Arithmetic LD. Journal of Learning Disabilities, 39, 270-281.
  • Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345–362.
  • Geary, D. C., Hoard, M. K., Byrd-Craven J., Nugent, L., & Numtee, C. (2007). Cognitive Mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343-1359.
  • Geary, D. C., Hoard, M. K., ByrdCraven, J., & Desoto, M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psichology, 88, 121-151.
  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.
  • Goldman, S. R., Pellegrino, J. W., & Mertz, L. D. (1988). Extended practice of basic addition facts: Strategy changes in learning disabled students. Cognition & Instruction, 5, 223-265.
  • Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). Therelation between phonological processing abilities and emerging individual differences in mathematical computation skills: A cross-sectional study from second to fifth grades. Journal of Experimental Child Psychology, 79,192-227.
  • Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problems solvers. Journal of Educational Psychology, 87, 18-32.
  • Jiménez, J. E. (1992). Estructuras operatorias y rendimiento en aritmética en niños con dificultades de aprendizaje. Revista de Psicología General y Aplicada, 45(2), 211-217.
  • Jiménez, J. E., & García, A. I. (1999). Is IQ-achievement discrepancy relevant in the definition of arithmetic learning disabilities? Learning Disability Quarterly, 22, 291-301.
  • Jordan, N. C., Glutting, J., & Ramineni , C. (2010). Learning and individual differences. Learning and individual differences, 20, 82-88.
  • Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice, 22 (1), 36-46.
  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarden number competence and latter mathematics outcomes. Developmental Psychology, 45, 850-867.
  • Kamawar, D., LeFevre, J., Bisanz, J., Fast, L., Skwarchuk, S., SmithChant, B. & Penner-Wilger, M. (2010). Knowledge of counting principles: How relevant is order irrelevance? Journal of Experimental Child Psychology, 105, 138-145.
  • Lyon, G. R. (2002). Reading development, reading difficulties, and reading instruction educational and public health issues. Journal of School Psychology, 40, 3-6.
  • Moeller, K., Fischer, U., Cress, U., & Nuerk, H. C. (2012) Diagnostics and intervention in developmental dyscalculia: Current issues and novel perspectives. En Z. Breznitz, O. Rubinsten, V. J. Molfese, & D. L. Molfese (Eds.), Reading, writing, mathematics and the developing brain: Listening to many voices (Vol. 6, pp. 233-275). New York: Springer.
  • Murphy, M. M., Mazzoco, M. M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics with learning disability (MLD) Vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 5, 458-478.
  • Nuerk, H. C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting tens and units in to different bins. Cognition, 82, B25-B33.
  • Nuerk, H. C., Kauffmann, L., Zoppoth, S., & Willmes, K. (2004). On the development of the mental number line: more, less or never holistic with increasing age? Developmental Psychology, 40(6), 1199-1211.
  • Ramaa, S., & Gowramma, I. P. (2002). A systematic procedure for identifying and classifying children with dyscalculia among primary school children in India. Dyslexia, 8, 67-85.
  • Rivière, A. (1990). Problemas y dificultades en el aprendizaje de las matemáticas: una perspectiva cognitiva. En A. Marachesi, C. Coll y J. Palacios (Comps.) Desarrollo psicológico y educación; III Necesidades educativas especiales y aprendizaje escolar. (pp. 155-182), Madrid: Alianza Psicología.
  • Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity may not mean different mechanisms. Trends in Cognitive Sciences, 13, 92-99.
  • Shaywitz, B. A., Fletcher, J. M., Holahan, J. M., & Shaywitz, S. E. (1992). Discrepancy compared to low achievement definitions of reading disability: results from the Connecticut Longitudinal Study. Journal of Learning Disabilities, 25(10), 639-48.
  • Shalev, R. S., Manor, O., & GrossTsur, V. (2005). Developmental dyscalculia: a prospective sixyear follow-up. Developmental Medicine and Child Neurology, 47, 121-125.
  • Siegler, R. S., & Booth, J. L. (2006). Development of numerical estimation in young children. Child Development, 75, 428-444.
  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428-444.
  • Siegler, R. S., & Opfer, J. E. (2003). Development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237-243.
  • Stern, E. (1993). What makes certain arithmetic word problems involving the comparision of set so difficult for children? Journal of Educational Psychology, 1, 7-23.
  • Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relation- ship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96(3), 471-491.
  • Swanson, H. L., y Sachse-Lee, C. (2001). Mathematical problems solving and working memory in children with learning disabilities: Both executive and phonological processes are important. Journal of Experimental Child Psychology, 79, 294-321.