Tecnologías de diseño y fabricación digital de bajo coste para el fomento de la competencia creativa

  1. Alejandro Bonnet de León
  2. Cecile Meier
  3. José Luis Saorín Pérez
  4. Jorge de la Torre Cantero
  5. Carlos Carbonell Carrera
Journal:
Arte, individuo y sociedad

ISSN: 1131-5598

Year of publication: 2017

Volume: 29

Issue: 1

Pages: 89-104

Type: Article

Export: RIS
DOI: 10.5209/aris.51886 DIALNET GOOGLE SCHOLAR lock_openOpen access editor
Author's full text: lockOpen access editor

Metrics

Cited by

  • Dialnet Métricas Cited by: 3 (17-09-2021)

SCImago Journal Rank

  • Year 2017
  • SJR Journal Impact: 0.157
  • Best Quartile: Q1
  • Area: Visual Arts and Performing Arts Quartile: Q1 Rank in area: 103/492

Índice Dialnet de Revistas

  • Year 2017
  • Journal Impact: 0.233
  • Field: HISTORIA DEL ARTE Quartile: C1 Rank in field: 2/39
  • Field: HISTORIA Quartile: C1 Rank in field: 56/306
  • Field: ARTE Quartile: C1 Rank in field: 2/136
  • Field: EDUCACIÓN Quartile: C2 Rank in field: 102/234

CIRC

  • Social Sciences: C
  • Human Sciences: A

CiteScore

  • Year 2017
  • CiteScore of the Journal : 0.1
  • Area: Visual Arts and Performing Arts Percentile: 42

Abstract

The emergence of spaces where digital fabrication techniques are used to turn ideas into digital designs, and these into tangible products through 3D printing offer a great opportunity to develop creativity, competence included in learning environments. 3D printers are being incorporated into the schools, so it is necessary to design activities around these technologies for the development of curricular competences. Creative competence empowers people to achieve different solutions to the same problem: in this article an educational activity designed to stimulate creative competence is proposed, in which accessible and low cost technologies are used for custom design of an articulated object, where students can choose between various options for achieving the goal. The results of a pilot project conducted with a group of 44 university students show that activities with digital editing tools and three-dimensional printing are valid for the development of creative competence.

Bibliographic References

  • Alonso, C., & Corbalán, F. (1997). Psicología diferencial. Guía de estudio. Murcia: Diego Martín.
  • Baillie, C. (2002). Enhancing creativity in engineering students. Engineering Science and Education Journal, 11(5), 185-192.
  • Blanco, A. (2009). Desarrollo y evaluación de competencias en Educación Superior. Madrid: Narcea S.A.
  • Blikstein, P. (2013). Digital Fabrication and ‘Making’ in Education: The Democratization of Invention. FabLabs: Of Machines, Makers and Inventors, 1 21.
  • Boy, G. A. (2013). From STEM to STEAM: toward a human-centred education, creativity & learning thinking. 31st European Conference on Cognitive Ergonomics (p. Article No. 3 ). New York: ACM.
  • Canessa, E., Fonda, C., & Zennaro, M. (2013). Low-cost 3D Printing for Science, Education & Sustainable Development. Trieste, Italy: ICTP.
  • Casas, J. (2000). La creatividad en educación infantil primaria. Madrid: EOS.
  • Casas, J. (2012). Aprende y enseña jugando. Madrid: Absalon.
  • Corbalán, F., Martínez, D., Donolo, C., Alonso, M., Tejerina, M., & Limiñana, M. (2006). CREA. Inteligencia creativa. Una medida cognitiva de la creatividad. Madrid: TEA Ediciones.
  • De la Torre, S. (1991). Evaluación de la creatividad: TAEC, un instrumento de apoyo a la Reforma. Escuela Española.
  • De la Torre-Cantero, J., Saorín, J. L., Melián Díaz, D., & Meier, C. (2015). STELLA 3D: Introducing Art and Creativity in Engineering Graphics Education. The International Journal of Engineering Education, 805–813 (Volume 31 Nº 3).
  • Friess, M. (2012). Scratching the Surface? The use of surface scanning in physical and paleoanthropology. (I. I. Antropologia, Ed.) Journal of Anthropological Sciences, 90, 126.
  • Gardner, H. (1995). Inteligencias múltiples: la teoría en la práctica. Barcelona: Paidós.
  • Guilford, J. (1967). The Nature of Human Intelligence. New York: McGraw-Hill.
  • Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). The NMC Horizon Report: 2015 K-12 Edition. Austin, Texas: The New Media Consortium.
  • Lifante Gil, Y. (2013). Ingenieros Creativos. Valencia: ADD editorial.
  • Liu, Z., & Schonwetter, D. (2004). Teaching Creativity in Engineering. International Journal of Engineering Education, 20 (5), 801-808.
  • Lukeneder, S., & Lukeneder, A. (2011). Methods in 3D modelling of Triassic Ammonites from Turkey (Taurus, FWF P22109-B17). Proceedings IAMG 2011, (pp. 496-505). Salzburg.
  • Marín, R., & De la Torre, S. (1991). Manual de la creatividad. Barcelona: Vicens Vives.
  • Martin, J. (1991). Engineering Education in a New World Order. Frontiers in Education Conference, Twenty-First Annual Conference. (pp. 141 144). West Lafayette, IN: IEEE.
  • Morón Macías, M. C. (2010). Un principio de intervención educativa: el juego y los juguetes en educación infantil. Temas para laEducación. Revista Digital para profesionales de la enseñanza, 1-9 (10).
  • National Academy of Engineering. (2004). The Engineer of 2020: Visions of Engineering in the New Century. Washington: The National Academies Press.
  • Sánchez Ron, J. (2011). La nueva ilustración ciencia, tecnología y humanidades en un mundo interdisciplinar. Oviedo: Nobel.
  • Saorín, J. L., & Bonnet de León, A. (2014). Tecnologías digitales de bajo coste, para la creación de figuras tridimensionales de papel y cartón. Trabajo Final de Máster. La Laguna, Tenerife, España.
  • Saorín, J. L., de la Torre, J., Melian, D., Meier, C., & Lifante, Y. (2015). Competencia Creativa en estudios de grado en Ingenieria. CINAIC 2015. Madrid.
  • Saorín, J. L., de la Torre-Cantero, J., Melián, D., Meier, C., & Rivero, D. (2015a). Blokify: Juego de modelado e impresión 3D en tableta digital para el aprendizaje de vistas normalizadas y perspectiva. Digital Education Review, (27), 105-121.
  • Saorín, J. L., Meier, C., de la Torre-Cantero, J. L., Melián, D., & Rivero, D. (2015b). Juegos en tabletas digitales como introducción al modelado y la impresión 3D. Education in the Knowledge Society (EKS), 16(2), 16 (2), 129.
  • Schmidt, R., & Ratto, M. (2013). Design Tools for the Rest of Us: Maker Hardware Requires Maker Software. Conference Proceedings: FAB at CHI Workshop.
  • Shaw, M. (2001). Engineering Problem Solving: A Classical Perspective. Norwich, NY: Noyes Publications.
  • Smith, A., Hielsher, S., Dickel, S., Söderberg, J., & van Oost, E. (2013). Grassroots digital fabrication and makerspaces: Reconfiguring, relocating and recalibrating innovation? University of Sussex, SPRU Working Paper SWPS, (2) 1 23.
  • Smith, P. K., & Pellegrini, A. (2013). Learning through play. Encyclopedia on Early Childhood Development, 1 6.
  • Tatarkievicz, W. (1988). Historia de seis ideas: arte, belleza, forma, creatividad, mímesis, experiencia estética. Madrid: Tecnos.
  • Torrance, E.P. (1966). Torrance Tests of Creative Thinking. Lexington, MA: Personnel Press.
  • Walter-Herrmann, J., & Büching, C. (2013). FabLab: Of Machines, Makers and Inventors. Wetzlar: Majuskel medienproduktion Gmbh.
  • Winkelbach, S., Molkenstruck, S., & Wahl, F. (2006). Low-cost laser range scanner and fast surface registration approach. Joint Pattern Recognition Symposium. 4174, pp. 718 – 728. Berlin Heidelberg: Springer.
  • Zapatero Guillén, D. (2012). Creación de juegos personalizados para niños y adolescentes hospitalizados= The creation of personalized toys for children and adolescent hospitalized. ArDIn. Arte, Diseño e Ingeniería, 54-62 (1).