Number processing skill trajectories in children with specific language impairment

  1. Cristina Rodríguez 1
  2. Sandra González 2
  3. Christian Peake 2
  4. Felipe Sepúlveda 2
  5. Juan A. Hernández-Cabrera 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  2. 2 Universidad Católica de la Santísima Concepción
    info

    Universidad Católica de la Santísima Concepción

    Concepción, Chile

    ROR https://ror.org/03y6k2j68

Journal:
Psicothema

ISSN: 0214-9915 1886-144X

Year of publication: 2020

Volume: 32

Issue: 1

Pages: 92-99

Type: Article

DOI: 10.7334/PSICOTHEMA2019.104 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Psicothema

Sustainable development goals

Abstract

Background: A number of contrasting hypotheses have been put forward concerning mathematical performance deficits in children with specific language impairment (SLI). However, debate as to the nature of this deficit continues. The present study analyzed whether the trajectories of SLI-children may be attributed to the use of symbolic vs. linguistic assessment tasks, or to a deficit in the magnitude system. Method: SLI-children (N=20) and typically achieving children (N=20) were monitored between kindergarten and first grade. Four tasks were designed, each with varying demands on language, symbolic, and domain-specific skills. Results: The groups only differed in the trajectories of those numerical tasks involving high language demand. Conclusions: These findings indicate that SLI children present an early deficit in the development of numerical skills that require retrieval from long term memory and articulation of a phonological representation. Number skills involving greater language demand should be included as part of SLI early detection and intervention protocols.

Funding information

Funding for this research was provided by CONICYT [grant: FONDECYT REGULAR no. 1161213] and the Spanish Ministry of Economy and Competitiveness [grant: Programa Ramón y Cajal, RYC-2014-16948] to the first author.

Bibliographic References

  • Alameda, J. R., Salguero, M. P., & Lorca, J. A. (2007). Quantitative numerical and lexical knowledge: Evidence of double dissociation. Psicothema, 19(3), 381-387.
  • Alt, M., Arizmendi, G. D., & Beal, C. R. (2014). The relationship between mathematics and language: Academic implications for children with specific language impairment and english language learners. Language Speech and Hearing Services in Schools, 45, 220-233. https://doi.org/10.1044/2014_LSHSS-13-0003
  • Archibald, L. M. D., Oram Cardy, J., Joanisse, M. F., & Ansari, D. (2013). Language, reading, and math learning profi les in an epidemiological sample of school age children. PLoS ONE, 8(10), 1-14. https://doi. org/10.1371/journal.pone.0077463
  • Arvedson, P. J. (2002). Young children with specific language impairment and their numerical cognition. Journal of Speech, Language, and Hearing Research, 45(5), 970-982. https://doi.org/10.1044/1092-4388(2002/079)
  • Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences, 102(39), 14116-14121. https://doi.org/10.1073/ pnas.0505512102
  • Connolly, A. J. (2007). KeyMath3 publication summary form. San Antonio, TX: Pearson.
  • Cross, A. M., Joanisse, M. F., & Archibald, L. M. D. (2019). Mathematical abilities in children with developmental language disorder. Language, Speech, and Hearing Services in Schools, 50(1), 1-14. https://doi. org/10.1044/2018_LSHSS-18-0041
  • Cowan, R., Donlan, C., Newton, E. J., & Llyod, D. (2005). Number skills and knowledge in children with specific language impairment. Journal of Educational Psychology, 97(4), 732-744. https://doi. org/10.1037/0022-0663.97.4.732
  • Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology, 106(1), 214229. https://doi.org/10.1037/a0034097
  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83-120.
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506. https://doi.org/10.1080/02643290244000239
  • Desoete, A., Ceulemans, A., Weerdt, F. De, & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64-81. https://doi.org/10.1348/2044-8279.002002
  • Donlan, C., Bishop, D. V., & Hitch, G. J. (1998). Magnitude comparisons by children with specific language impairments: Evidence of unimpaired symbolic processing. International Journal of Language & Communication Disorders / Royal College of Speech & Language Therapists, 33(2), 149-160. https://doi.org/10.1080/136828298247802
  • Donlan, C., Cowan, R., Newton, E. J., & Lloyd, D. (2007). The role of language in mathematical development: Evidence from children with specific language impairments. Cognition, 103(1), 23-33. https://doi. org/10.1016/j.cognition.2006.02.007
  • Donlan, C., & Gourlay, S. (1999). The importance of non-verbal skills in the acquisition of place-value knowledge: Evidence from normally-developing and language-impaired children. British Journal of Developmental Psychology, 17(1), 1-19. https://doi. org/10.1348/026151099165113
  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., … Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428-1446. https:// doi.org/10.1037/0012-1649.43.6.1428; 10.1037/0012-1649.43.6.1428. supp (Supplemental)
  • Fazio, B. B. (1996). Mathematical abilities of children with specific language impairment: A 2-year follow up. Journal of Speech, Language, and Hearing Research, 39(4), 839-849. https://doi. org/10.1044/jshr.3904.839
  • Fazio, B. B. (1999). Arithmetic calculation, short-term memory, and language performance in children with specific language impairment: A 5-yuear follow-up. Journal of Speech, Language, and Hearing Research, 42(2), 420-431. https://doi.org/10.1086/250095
  • Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? Trends in Cognitive Sciences, 9(1), 6-10. https://doi. org/10.1016/j.tics.2004.11.004
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 14571465. https://doi.org/10.1037/a0012682
  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. https://doi.org/10.1038/ nature07246
  • Hernández, J. A., & Betancort, M. (2016). ULLRtoolbox. Retrieved from https://sites.google.com/site/ullrtoolbox/
  • Ivanovich, R., Forno, H., Durán, M. C., Hazbún, J., Castro, C., & Ivanovic, D. (2000). Estudio de la capacidad intelectual (test de matrices progresivas de Raven) en escolares chilenos de 5 a 18 años [Study of the intellectual capacity (Raven’s progressive matrices test) in Chilean students ages 5-18]. Antecedentes generales, normas y recomendaciones. Revista de Psicología General y Aplicada, 53(1), 5-30.
  • Johnston, J. R., (1994). Cognitive abilities in children with language impairment. In R. Watkins & M. Rice (Eds.), Specific Language Impairments in Children. Baltimore: Paul Brookes.
  • Kamhi, A. G. (1981). Nonlinguistic symbolic and conceptual abilities of language-impaired and normally developing children. Journal of Speech Language and Hearing Research, 24(3), 446-453. https://doi. org/10.1044/jshr.2403.446
  • Kleemans, T., Segers, E., & Verhoeven, L. (2012). Naming speed as a clinical marker in predicting basic calculation skills in children with specific language impairment. Research in Developmental Disabilities, 33(3), 882-889. https://doi.org/10.1016/j.ridd.2011.12.007
  • Koponen, T., Mononen, R., Räsänen, P., & Ahonen, T. (2006). Basic numeracy in children with specific language impairment: Heterogeneity and connections to language. Journal of Speech, Language, and Hearing Research, 49(1), 58-73. https://doi.org/10.1044/1092-4388(2006/005)
  • Koponen, T., Salmi, P., Torppa, M., Eklund, K., Aro, T., Aro, M., … Nurmi, J. E. (2016). Counting and rapid naming predict the fluency of arithmetic and reading skills. Contemporary Educational Psychology, 44-45, 83-94. https://doi.org/10.1016/j.cedpsych.2016.02.004
  • Mirman, D. (2014). Growth curve analysis and visualization using R. Florida, USA:Chapman y Hall/CRC.
  • Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLOS ONE, 8(7), e67918. https://doi.org/10.1371/journal.pone.0067918
  • Nys, J., & Leybaert, J. (2013). Impact of language abilities on exact and approximate number skills development: Evidence from children with specific language impairment. Journal of Speech, Language, and Hearing Research, 56(3), 956-971. https://doi.org/10.1044/10924388(2012/10-0229)
  • Pavez, M. (2003). Test exploratorio de Gramática española de A. Toronto. Aplicación en Chile [Allen Toronto’s Exploratory Test of Spanish Grammar]. Santiago, Chile: Ediciones Universidad Católica de Chile.
  • Pavez, M. (2006). TECAL-Test de evaluación de la comprensión auditiva del lenguaje [Test of auditory comprehension of language]. Santiago, Chile: Ediciones Universidad Católica de Chile
  • Pavez, M., Maggiolo, M., & Coloma, C.J. (2008). TEPROSIF-Test para evaluar procesos de simplificación fonológica. Versión revisada [Test of phonological simplification processes-revised]. Santiago, Chile: Ediciones Universidad Católica.
  • Peake, C., Jiménez, J. E., Rodríguez, C., Bisschop, E., & Villarroel, R. (2014). Syntactic awareness and arithmetic word problem solving in children with and without learning disabilities. Journal of Learning Disabilities, 48(6), 593-601. doi:10.1177/0022219413520183
  • R Core Team (2016). A language and environment for statistical computting. R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Raven, J., Raven, J. C., & Court, J. H. (1998). Coloured progressive matrices. Oxford: Oxford Psychologists Press.
  • Stone, C. A., & Connell, P. J. (1993). Induction of a visual symbolic rule in children with specific language impairment. Journal of Speech Language and Hearing Research, 36(3), 599-608. https://doi. org/10.1044/jshr.3603.599
  • Simmons, F. R., & Singleton, C. (2008). Do weak phonological representations impact on arithmetic development? A review of research into arithmetic and dyslexia. Dyslexia, 14(2), 77-94. https:// doi.org/10.1002/dys.341
  • Vanbinst, K., Ghesquiere, P., & De Smedt, B. (2012). Representations and individual differences in children’s arithmetic strategy use. Mind, Brain and Education, 6(3), 129-136. https://doi.org/10.1111/j.1751228X.2012.01148.x