Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo

  1. J.J. Ortega 1
  2. M. Sigut 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Any de publicació: 2016

Volum: 13

Número: 3

Pàgines: 293-303

Tipus: Article

DOI: 10.1016/J.RIAI.2016.05.002 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resum

En este artículo se presenta un prototipo de plataforma móvil para simulación de vuelo de alto realismo. La parte central de este prototipo, que hemos denominado Albatros, es la maqueta hecha a mano. Esta maqueta es una réplica a escala de la plataforma a tamaño real que los autores pretenden construir en un futuro próximo. La maqueta está basada en la plataforma Stewart-Gough, y se ha equipado con actuadores neumáticos y potenciómetros magnéticos como sensores de posición. La plataforma móvil recibe la información de vuelo proveniente de un simulador de vuelo comercial en forma de la posición de referencia para los seis actuadores. Así, la plataforma móvil puede seguir los movimientos del avión simulado gracias a la implementación de seis controladores proporcionales-integrales. La interfaz entre el ordenador de simulación y la maqueta es una placa Arduino Mega. La simulación de vuelo de alto realismo se ha pretendido alcanzar gracias, por un lado, a un seguimiento lo más fiel posible de la consignas generadas por el software de simulación de vuelo y, por otro, a un retardo entre los movimientos del avión simulado y la maqueta tan pequeño como sea posible.

Referències bibliogràfiques

  • Air Line Pilots Association (ALPA), 2007. Safety Committee Statement of Position: The Need for Motion in Flight Simulation.
  • Alvárez, C., Saltaren, R., Aracil, R., García, C., 2009. Concepción, desarrollo y avances en el control de navegación de robots submarinos paralelos: El robot Remo-I. Revista Iberoamericana de Automatica ´ e Informatica ´ Industrial 6(3), 92-100.
  • Ames Technology Capabilities and Facilities. 2008. VMS - Vertical Motion Simulator. Recuperado de http://www.nasa.gov/ centers/ames/research/ technology-onepagers/vms.html.
  • AMST. (2015). Desdemona - The revolution in simulation. Recuperado de http://www.amst.co.at/en/training-simulation-products/desdemona/.
  • Arai, S., Kondo, H., Goto, H., Tanaka, Y., 2012. Evaluation of motion with washout algorithm for flight simulator using tripod parallel mechanism. In Proc. of the 19th International Conference Mechatronics and Machine Vision in Practice, Auckland.
  • Bellmann, T., Heindl, J., Hellerer, M., Kuchar, R., Sharma, K., Hirzinger, G., 2011. The DLR robot motion simulator Part I: Design and setup. In Proc. of IEEE International Conference on Robotics and Automation, Shanghai.
  • Bürki-Cohen, J., Go, T.H., Chung, W.W., Schroeder, J., 2004. Simulator platform motion requirements for recurrent airline pilot training and evaluation, Final Report.
  • Bürki-Cohen, J., Sparko, A.L., Bellman, M., 2011. Flight simulator motion literature pertinent to airline-pilot recurrent training and evaluation. In Proc. of AIAA Modeling and Simulation Technologies Conference, Portland.
  • Bussolari, S.R., Lee, A.T., 1986. The effects of flight simulator motion on pilot performance and simulator acceptability in transport category aircraft. Massachusetts Institute of Technology/NASA Ames Research Center.
  • Caro, P.W., 1979. The relationship between flight simulator motion and training requirements. Human Factors 4, 493-501.
  • Chunping, P., Ying, L., Jianmin, L., Yongjun, G., 2012. A time varying washout approach for flight simulation hexapod motion system. In Proc. of IEEE International Conference on Computer Science and Automation Engineering, Zhangjiajie.
  • FlightSafety International. (2015). FlightSafety Simulators and Training Technology. Recuperado de http://www.flightsafety.com/ fs simulation landing.php.
  • Go, T.H., Bürki-Cohen, J., Chung, W.W., Schroeder, J., Saillant, G., Jacobs, S., Longridge, T., 2003. The effects of enhanced hexapod motion on airline pilot recurrent training and evaluation. In Proc. of AIAA Modeling and Simulation Technologies Conference, Austin.
  • Grant, P.R., Yam, B., Hosman, R., Schroeder, J.A., 2006. Effect of simulator motion on pilot behavior and perception. J. Aircr. 43(6), 1914-1924.
  • Hall, J.R., 1989. The need for platform motion in modern piloted flight training simulators. In Royal Aerospace Establishment, Tech Memo FM 35, Bedford.
  • Hitaka, Y., Tanaka, Y., Ichiryu, K., 2009. Motion analysis of tripod parallel mechanism. Artif. Life and Robot. 14(4), 494-497.
  • Izaguirre, E., Hernández, L., Rubio, E., Prieto, P.J., Hernández, A., 2011. Control desacoplado de plataforma neumática de 3-GDL utilizada como simulador de movimiento. Revista Iberoamericana de Automática e Informática Industrial 8(4), 345-356.
  • Kent, J.L., 2010. Limits on human perception, in: Psychedelic information theory. Shamanish in the age of reason. PIT Press / Supermassive, LLC, Seattle WA, pp. 37-48.
  • Levison, W.H., Junker, A.M., 1978. A model for the pilot’s use of motion cues in steady-state roll-axis tracking tasks. In Proc. of AIAA Flight Simulation Technologies Conference, Arlington.
  • National Aeronautics and Space Administration. (2014). CVSRF Advanced Concepts Flight Simulator. Recuperado de http://www.aviationsystemsdivision.arc.nasa.gov/ facilities/ cvsrf/ acfs.shtml.
  • Pradipta, J., Klunder, M., Weickgenannt, M., Sawodny, O., 2013. Development of a pneumatically driven flight simulator stewart platform using motion and force control. In Proc. of International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW.
  • Regional Airline Association (RAA), 2008. Government research indicates simulator motion adds training complexity - RAA Recommends Operational Testing to Validate Effectiveness of Non-Motion Platforms, Regional Airline Industry White Paper.
  • Shiga, Y., Tanaka, Y., Goto, H., Takeda, H., 2011. Design of a six degree-offreedom tripod parallel mechanism for flight simulators. Int. J. Automation Technol. 5(5), 715-721.
  • Sung-Hua, Ch., Li-Chen, F., 2011. An optimal washout filter design with fuzzy compensation for a motion platform. In Proc. of the 18th IFAC World Congress, Milano.
  • Vaden, E.A., Hall, S., 2005. The effect of simulator platform motion on pilot training transfer: A meta-analysis, Int. J. Aviat. Psychology 15(4), 375-393.
  • Van der Pal, J., 1999. The effect of simulator motion on parameter training for F-16 pilots, engineering psychology and cognitive ergonomics: transportation systems, medical ergonomics and training. Edited by D. Harris, Ashgate, Oxford, England, pp. 267-275.
  • Van Heerden, A., Lidbetter, R., Liebenberg, L., Mathews, E.H., Meyer, J.P., 2011. Development of a motion platform for an educational flight simulator. Int. J. of Mechanical Engineering Education 39(4), 306-322.
  • Woodrow, P.M., Tischler, M.B., Hagerott, S.G., Mendoza, G.E., 2013. Low cost flight-test platform to demonstrate flight dynamics concepts using frequency-domain system identification methods. In Proc. of AIAA Atmospheric Flight Mechanics Education Conference, Boston.
  • Wu, L., Sun, Y.P., 2013. Development of a low-cost flight simulation training device for research and education. In Proc. of the 2nd International Conference on Intelligent Technologies and Engineering Systems, Kaohsiung, Taiwan.