A Novel Heterozygous Deletion Variant in KLOTHO Gene Leading to Haploinsufficiency and Impairment of Fibroblast Growth Factor 23 Signaling Pathway

  1. De Brauwere, David-Paul 6
  2. Martín-Núñez, Ernesto 123
  3. Ureña-Torres, Pablo A. 6
  4. Prieto-Morín, Carol 1
  5. Tagua, Víctor G. 1
  6. Kannengiesser, Caroline 5
  7. Oudin, Claire 5
  8. Friedlander, Gérard 6
  9. Donate-Correa, Javier 134
  10. Leroy, Christine 6
  11. Navarro-González, Juan F. 11224
  1. 1 Hospital Universitario Nuestra Señora de Candelaria
    info

    Hospital Universitario Nuestra Señora de Candelaria

    Santa Cruz de Tenerife, España

    ROR https://ror.org/005a3p084

  2. 2 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  3. 3 Sociedad Española de Nefrología
    info

    Sociedad Española de Nefrología

    Santander, España

  4. 4 Instituto de Salud Carlos III
    info

    Instituto de Salud Carlos III

    Madrid, España

    ROR https://ror.org/00ca2c886

  5. 5 Hôpital Bichat-Claude-Bernard
    info

    Hôpital Bichat-Claude-Bernard

    París, Francia

    ROR https://ror.org/03fdnmv92

  6. 6 Paris Descartes University
    info

    Paris Descartes University

    París, Francia

Revista:
Journal of Clinical Medicine

ISSN: 2077-0383

Año de publicación: 2019

Volumen: 8

Número: 4

Páginas: 500

Tipo: Artículo

DOI: 10.3390/JCM8040500 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Clinical Medicine

Objetivos de desarrollo sostenible

Resumen

Hyperphosphatemia is commonly present in end-stage renal disease. Klotho (KL)is implicated in phosphate homeostasis since it acts as obligate co-receptor for the fibroblastgrowth factor 23 (FGF23), a major phosphaturic hormone. We hypothesized that genetic variationin the KL gene might be associated with alterations in phosphate homeostasis resulting inhyperphosphatemia. We performed sequencing for determining KL gene variants in a group ofresistant hyperphosphatemic dialysis patients. In a 67-year-old female, blood DNA sequencingrevealed a heterozygous deletion of a T at position 1041 (c.1041delT) in exon 2. This variation causeda frameshift with substitution of isoleucine for phenylalanine and introduction of a prematuretermination codon (p.Ile348Phefs*28). cDNA sequencing showed absence of deletion-carriertranscripts in peripheral blood mononuclear cells suggesting degradation of these through anonsense-mediated RNA decay pathway. Experiments in vitro showed that p.Ile348Phefs*28 variantimpaired FGF23 signaling pathway, indicating a functional inactivation of the gene. In the patient,serum levels of KL were 2.9-fold lower than the mean level of a group of matched dialysis subjects,suggesting a compromise in the circulating protein concentration due to haploinsufficiency. These Hyperphosphatemia is commonly present in end-stage renal disease. Klotho (KL)is implicated in phosphate homeostasis since it acts as obligate co-receptor for the fibroblastgrowth factor 23 (FGF23), a major phosphaturic hormone. We hypothesized that genetic variationin the KL gene might be associated with alterations in phosphate homeostasis resulting inhyperphosphatemia. We performed sequencing for determining KL gene variants in a group ofresistant hyperphosphatemic dialysis patients. In a 67-year-old female, blood DNA sequencingrevealed a heterozygous deletion of a T at position 1041 (c.1041delT) in exon 2. This variation causeda frameshift with substitution of isoleucine for phenylalanine and introduction of a prematuretermination codon (p.Ile348Phefs*28). cDNA sequencing showed absence of deletion-carriertranscripts in peripheral blood mononuclear cells suggesting degradation of these through anonsense-mediated RNA decay pathway. Experiments in vitro showed that p.Ile348Phefs*28 variantimpaired FGF23 signaling pathway, indicating a functional inactivation of the gene. In the patient,serum levels of KL were 2.9-fold lower than the mean level of a group of matched dialysis subjects,suggesting a compromise in the circulating protein concentration due to haploinsufficiency. These Hyperphosphatemia is commonly present in end-stage renal disease. Klotho (KL)is implicated in phosphate homeostasis since it acts as obligate co-receptor for the fibroblastgrowth factor 23 (FGF23), a major phosphaturic hormone. We hypothesized that genetic variationin the KL gene might be associated with alterations in phosphate homeostasis resulting inhyperphosphatemia. We performed sequencing for determining KL gene variants in a group ofresistant hyperphosphatemic dialysis patients. In a 67-year-old female, blood DNA sequencingrevealed a heterozygous deletion of a T at position 1041 (c.1041delT) in exon 2. This variation causeda frameshift with substitution of isoleucine for phenylalanine and introduction of a prematuretermination codon (p.Ile348Phefs*28). cDNA sequencing showed absence of deletion-carriertranscripts in peripheral blood mononuclear cells suggesting degradation of these through anonsense-mediated RNA decay pathway. Experiments in vitro showed that p.Ile348Phefs*28 variantimpaired FGF23 signaling pathway, indicating a functional inactivation of the gene. In the patient,serum levels of KL were 2.9-fold lower than the mean level of a group of matched dialysis subjects,suggesting a compromise in the circulating protein concentration due to haploinsufficiency. These findings provide a new loss-of-function variant in the human KL gene, suggesting that geneticdeterminants might be associated to clinical resistant hyperphosphatemia.

Referencias bibliográficas

  • Vervloet, M.G.; Sezer, S.; Massy, Z.A.; Johansson, L.; Cozzolino, M.; Fouque, D.; ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group. The role of phosphate in kidney disease. Nat. Rev. Nephrol. 2017, 13, 27–38. [CrossRef] [PubMed]
  • 2. Sherman, R.A. Hyperphosphatemia in Dialysis Patients: Beyond Nonadherence to Diet and Binders. Am. J. Kidney Dis. 2016, 67, 182–186. [CrossRef] [PubMed]
  • 3. Hu, M.C.; Shiizaki, K.; Kuro-o, M.; Moe, O.W. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Phisiol. 2013, 75, 503–533. [CrossRef] [PubMed]
  • 4. Lindberg, K.; Amin, R.; Moe, O.W.; Hu, M.C.; Erben, R.G.; Östman Wernerson, A.; Lanske, B.; Olauson, H.; Larsson, T.E. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 2006, 25, 2169–2175. [CrossRef]
  • 5. Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [CrossRef]
  • 6. Tsujikawa, H.; Kurotaki, Y.; Fujimori, T.; Fukuda, K.; Nabeshima, Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol. Endocrinol. 2003, 17, 2393–2403. [CrossRef]
  • 7. Stenvinkel, P.; Larsson, T.E. Chronic kidney disease: a clinical model of premature aging. Am. J. Kidney Dis. 2013, 62, 339–351. [CrossRef]
  • 8. Ichikawa, S.; Imel, E.A.; Kreiter, M.L.; Yu, X.; Mackenzie, D.S.; Sorenson, A.H.; Goetz, R.; Mohammadi, M.; White, K.E.; Econs, M.J. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest. 2007, 117, 2684–2691. [CrossRef]
  • 9. Brownstein, C.A.; Adler, F.; Nelson-Williams, C.; Iijima, J.; Li, P.; Imura, A.; Nabeshima, Y.; Reyes-Mugica, M.; Carpenter, T.O.; Lifton, R.P. A translocation causing increased alpha-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. PNAS 2008, 105, 3455–3460. [CrossRef] [PubMed]
  • 10. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [CrossRef]
  • 11. Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods. 2014, 11, 361–362. [CrossRef]
  • 12. Yamazaki, Y.; Imura, A.; Urakawa, I.; Shimada, T.; Murakami, J.; Aono, Y.; Hasegawa, H.; Yamashita, T.; Nakatani, K.; Saito, Y.; et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem. Biophys. Res. Commun. 2010, 398, 513–518. [CrossRef]
  • 13. Askar, A.M. Hyperphosphatemia. The hidden killer in chronic kidney disease. Saudi. Med. J. 2015, 36, 13–19. [CrossRef]
  • 14. Araya, K.; Fukumoto, S.; Backenroth, R.; Takeuchi, Y.; Nakayama, K.; Ito, N.; Yoshii, N.; Yamazaki, Y.; Yamashita, T.; Silver, J.; et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J. Clin. Endocrinol. Metab. 2005, 90, 5523–5527. [CrossRef]
  • 15. Benet-Pages, A.; Orlik, P.; Strom, T.M.; Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 2005, 14, 385–390. [CrossRef]
  • 16. Chefetz, I.; Heller, R.; Galli-Tsinopoulou, A.; Richard, G.; Wollnik, B.; Indelman, M.; Koerber, F.; Topaz, O.; Bergman, R.; Sprecher, E.; et al. A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum. Genet. 2005, 118, 261–266. [CrossRef]
  • 17. Larsson, T.; Yu, X.; Davis, S.I.; Draman, M.S.; Mooney, S.D.; Cullen, M.J.; White, K.E. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J. Clin. Endocrinol. Metab. 2005, 90, 2424–2427. [CrossRef]
  • 18. Garringer, H.J.; Malekpour, M.; Esteghamat, F.; Mortazavi, S.M.; Davis, S.I.; Farrow, E.G.; Yu, X.; Arking, D.E.; Dietz, H.C.; White, K.E. Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E929–E937. [CrossRef]
  • 19. Masi, L.; Gozzini, A.; Franchi, A.; Campanacci, D.; Amedei, A.; Falchetti, A.; Franceschelli, F.; Marcucci, G.; Tanini, A.; Capanna, R.; et al. A novel recessive mutation of fibroblast growth factor-23 in tumoral calcinosis. J. Bone Joint Surg. Am. 2009, 91, 1190–1198. [CrossRef]
  • 20. Abbasi, F.; Ghafouri-Fard, S.; Javaheri, M.; Dideban, A.; Ebrahimi, A.; Ebrahim-Habibi, A. A new missense mutation in FGF23 gene in a male with hyperostosis-hyperphosphatemia syndrome (HHS). Gene 2014, 542, 269–271. [CrossRef]
  • 21. Chang, Y.F.; Imam, J.S.; Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 2007, 76, 51–74. [CrossRef]
  • 22. Hug, N.; Longman, D.; Cáceres, J.F. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 2016, 44, 1483–1495. [CrossRef]
  • 23. Kurosu, H.; Ogawa, Y.; Miyoshi, M.; Yamamoto, M.; Nandi, A.; Rosenblatt, K.P.; Baum, M.G.; Schiavi, S.; Hu, M.C.; Moe, O.W.; et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 2006, 281, 6120–6123. [CrossRef]
  • 24. Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostatis. J. Bone Miner Res. 2004, 19, 429–435. [CrossRef]
  • 25. Urakawa, I.; Yamazaki, Y.; Shimada, T.; Iijima, K.; Hasegawa, H.; Okawa, K.; Fujita, T.; Fukumoto, S.; Yamashita, T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444, 770–774. [CrossRef]
  • 26. Chen, G.; Liu, Y.; Goetz, R.; Fu, L.; Jayaraman, S.; Hu, M.C.; Moe, O.W.; Liang, G.; Li, X.; Mohammadi, M. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 2018, 553, 461–466. [CrossRef]
  • 27. Turan, K.; Ata, P. Effects of intra- and extr acellular factors on anti-aging klotho gene expression. Genet. Mol. Res. 2011, 10, 2009–2023. [CrossRef]
  • 28. Diener, S.; Schorpp, K.; Strom, T.M.; Hadian, K.; Lorenz-Depiereux, B. Development of A Cell-Based Assay to Identify Small Molecule Inhibitors of FGF23 Signaling. Assay Drug Dev. Technol. 2015, 13, 476–487. [CrossRef]
  • 29. Hu, M.C.; Kuro-o, M.; Moe, O.W. Renal and extrarenal actions of Klotho. Semin. Nephrol. 2013, 33, 118–129. [CrossRef]
  • 30. Matsumura, Y.; Aizawa, H.; Shiraki-Iida, T.; Nagai, R.; Kuro-o, M.; Nabeshima, Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 1998, 242, 626–630. [CrossRef]
  • 31. Shiraki-Iida, T.; Aizawa, H.; Matsumura, Y.; Sekine, S.; Iida, A.; Anazawa, H.; Nagai, R.; Kuro-o, M.; Nabeshima, Y. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 1998, 424, 6–10. [CrossRef]
  • 32. Neyra, J.A.; Hu, M.C. αKlotho and Chronic Kidney Disease. Vitam. Horm. 2016, 101, 257–310.
  • 33. Martín-Núñez, E.; Donate-Correa, J.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. Implications of Klotho in vascular health and disease. World J. Cardiol. 2014, 6, 1262–1269. [CrossRef]