Analysis of the pyrolysis kinetics of wastewater-fed microalgal biomass by a parallel order-based reaction model

  1. Asensio, Isaac Alonso 12
  2. García, Marcos Frías 3
  3. González Díaz, Eduardo 4
  4. Díaz, Oliver 5
  5. González, Enrique 5
  6. Vera, Luisa 5
  1. 1 Instituto De Astrofísica De Canarias , La Laguna, Spain
  2. 2 Departamento De Astrofísica, Universidad De La Laguna , La Laguna, Spain
  3. 3 Servicio General De Apoyo a La Investigación (SEGAI), Universidad De La Laguna , La Laguna, Spain
  4. 4 Departamento De Técnicas Y Proyectos En Ingeniería Y Arquitectura, Universidad De La Laguna , La Laguna, Spain
  5. 5 Departamento De Ingeniería Química Y TF, Universidad De La Laguna , La Laguna, Spain
Journal:
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects

ISSN: 1556-7036

Year of publication: 2020

Pages: 1-14

Type: Article

DOI: 10.1080/15567036.2020.1834645 GOOGLE SCHOLAR

Abstract

Wastewater-fed microalgal biomass has attracted a considerable interest for biofuel production via pyrolysis in recent years. In this study, thermal degradation behavior and pyrolysis kinetic parameters have been investigated by non-isothermal thermogravimetric analysis. Analysis of the reactive phase showed two partially overlapping devolatilization stages, with degradation peaks at 540–570 K, accompanied by a shoulder at around 590–615 K, and 735–785 K, respectively. Model-free kinetic methods showed a large variation in the activation energy with the conversion degree, suggesting a multi-step reaction scheme. Consequently, a parallel order-based reaction model of three pseudo-components (proteins, carbohydrates and lipids) was applied, showing a good agreement with the experimental data. Based on this approach, the average activation energies were 143, 166 and 61 kJ·mol−1 for proteins, carbohydrates and lipids, respectively, while the average orders of reaction were 2.3, 1.6 and 0.6.

Bibliographic References

  • 10.1016/j.rser.2018.03.067
  • 10.1016/j.biortech.2012.10.043
  • Akahira T., (1971), Research Report, Chiba Institute of Technology, 16, pp. 22
  • 10.1007/s10973-018-7506-2
  • 10.1016/j.fuel.2010.09.023
  • 10.1016/j.fuel.2014.01.014
  • 10.1016/j.combustflame.2011.11.015
  • 10.1016/j.biortech.2017.06.087
  • 10.1016/j.enconman.2016.10.077
  • 10.1016/j.renene.2017.06.049
  • 10.1137/S1064827595289108
  • 10.1016/j.biortech.2015.03.081
  • 10.1016/j.enconman.2018.01.036
  • 10.1016/j.biortech.2014.07.076
  • EU . 2018. Directive (Eu) 2018/2001 of the European parliament and of the council [Internet]. Off. J. Eur. Union. Accessed 06 July 2020. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN.
  • 10.1016/j.biortech.2013.09.137
  • 10.1021/acs.iecr.8b01559
  • 10.1016/j.biortech.2014.11.061
  • IEA , Tracking Transport 2019. Paris; 2019.
  • 10.1016/j.cej.2014.11.045
  • 10.1021/ac60131a045
  • 10.1016/j.biortech.2019.122126
  • 10.1016/j.energy.2014.05.008
  • 10.1016/j.algal.2016.02.016
  • 10.1016/j.algal.2016.08.007
  • 10.1016/j.jes.2017.05.020
  • 10.4103/0973-1296.149730
  • 10.1023/A:1008153831875
  • 10.1016/S0960-8524(01)00072-4
  • RFS . The Renewable Fuel Standard (RFS): An overview [Internet]. Congressional Research Service. R43325. Accessed 06 July 2020. https://fas.org/sgp/crs/misc/R43325.pdf
  • Rocca, S. A. Agostini , J. Giuntoli , and L. Marelli. 2015. Biofuels from algae: Technology options, energy balance and GHG emissions: Insights from a literature review. Publications Office of the European Union.
  • 10.1002/bit.22033
  • 10.1016/j.biortech.2014.06.111
  • 10.1016/j.biortech.2009.08.020
  • 10.1016/j.algal.2018.03.005
  • 10.1016/j.jaap.2019.02.014
  • 10.1016/j.biortech.2018.02.031
  • 10.1016/j.energy.2016.12.040
  • 10.1016/B978-0-444-64062-8.00008-5
  • 10.1016/j.tca.2011.03.034
  • 10.1016/j.biortech.2017.01.018
  • 10.1016/j.jaap.2011.01.004
  • 10.1016/j.biortech.2014.03.162
  • 10.1016/j.enconman.2016.12.060
  • 10.1590/0104-6632.20160331s00003629