Radon measurements in public buildings in El Hierro, Canary Islands (Spain)

  1. Gutiérrez Villanueva, José Luis
  2. Hernández Alemán, Anastasia
  3. Santamarta, Juan C.
  4. Cruz-Pérez, Noelia
  5. Hernández-Gutiérrez, Luis E.
  6. Rodríguez-Martín, Jesica
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Air Quality, Atmosphere & Health

ISSN: 1873-9318 1873-9326

Año de publicación: 2021

Tipo: Artículo

DOI: 10.1007/S11869-021-00987-Y GOOGLE SCHOLAR

Otras publicaciones en: Air Quality, Atmosphere & Health

Resumen

After the underwater eruption that took place on the island of El Hierro (Canary Islands, Spain) in 2012, there were significant increases in radon gas emissions in the soil. This study was aimed to measure the radon concentrations in public building in El Hierro in order to have better knowledge of the implications of a submarine eruption and the radon levels on the island. The study was undertaken in 38 public buildings located in the three municipalities of the island. Although high concentrations of radon gas were expected due to the recent eruptions, it was found that 70% of the facilities studied maintained radon gas concentration values below the limit values established by Directive 2013/59/EURATOM.

Referencias bibliográficas

  • Appleton, J. D. (2013). Radon in air and water. In O. Selinus (Ed.), Essentials of Medical Geology: Revised Edition (pp. 239–277). https://doi.org/10.1007/978-94-007-4375-5_11
  • Arvela H (2001) Experiences in radon-safe building in Finland. Sci Total Environ 272(1–3):169–174. https://doi.org/10.1016/S0048-9697(01)00688-X
  • Assembly, G. (2018). UNSCEAR 2017 Report: SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION. http://www.unscear.org/docs/publications/2017/UNSCEAR_2017_Report.pdf
  • Awhida A, Ujić P, Vukanac I, Đurašević M, Kandić A, Čeliković I, Lončar B, Kolarž P (2016) Novel method of measurement of radon exhalation from building materials. J Environ Radioact 164:337–343. https://doi.org/10.1016/j.jenvrad.2016.08.009
  • Burghele B, Ţenter A, Cucoş A, Dicu T, Moldovan M, Papp B, Szacsvai K, Neda T, Suciu L, Lupulescu A, Maloş C, Florică Ş, Baciu C, Sainz C (2019) The FIRST large-scale mapping of radon concentration in soil gas and water in Romania. Sci Total Environ 669:887–892. https://doi.org/10.1016/j.scitotenv.2019.02.342
  • Celik N, Cevik U, Celik A, Kucukomeroglu B (2008) Determination of indoor radon and soil radioactivity levels in Giresun, Turkey. J Environ Radioact 99(8):1349–1354. https://doi.org/10.1016/j.jenvrad.2008.04.010
  • Chen J, Rahman NM, Atiya IA (2010) Radon exhalation from building materials for decorative use. J Environ Radioact 101(4):317–322. https://doi.org/10.1016/j.jenvrad.2010.01.005
  • Copes, R., & Peterson, E. (2014). Indoor radon a public health perspective
  • CSN (2012) Guía de Seguridad 11.4: Metodología para la evaluación de la exposición al radón en los lugares de trabajo. Guías de Seguridad, p 34
  • Dai D, Neal FB, Diem J, Deocampo DM, Stauber C, Dignam T (2019) Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States. Sci Total Environ 668:500–511. https://doi.org/10.1016/j.scitotenv.2019.02.257
  • Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomáscaron;ek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Br Med J 330(7485):223–226. https://doi.org/10.1136/bmj.38308.477650.63
  • De Francesco S, Tommasone FP, Cuoco E, Tedesco D (2010) Indoor radon seasonal variability at different floors of buildings. Radiat Meas 45(8):928–934. https://doi.org/10.1016/j.radmeas.2010.05.026
  • Finne IE, Kolstad T, Larsson M, Olsen B, Prendergast J, Rudjord AL (2019) Significant reduction in indoor radon in newly built houses. J Environ Radioact 196(January 2018):259–263. https://doi.org/10.1016/j.jenvrad.2018.01.013
  • Franesqui, M. A., Yepes, J., & Jubera, J. (2015). Caracterización de áridos volcánicos de canarias y aplicaciones en la construcción de carreteras
  • Fuente M, Rábago D, Goggins J, Fuente I, Sainz C, Foley M (2019) Radon mitigation by soil depressurisation case study: radon concentration and pressure field extension monitoring in a pilot house in Spain. Sci Total Environ 695:133746. https://doi.org/10.1016/j.scitotenv.2019.133746
  • Girault F, Perrier F (2012) Estimating the importance of factors influencing the radon-222 flux from building walls. Sci Total Environ 433:247–263. https://doi.org/10.1016/j.scitotenv.2012.06.034
  • IARC (1988) Evaluation of the carcinogenic risks to humans. In International Agency for Research on Cancer 43
  • Khan MS, Srivastava DS, Azam A (2012) Study of radium content and radon exhalation rates in soil samples of northern India. Environ Earth Sci 67(5):1363–1371. https://doi.org/10.1007/s12665-012-1581-7
  • Kumar A, Chauhan RP (2015) Back diffusion correction for radon exhalation rates of common building materials using active measurements. Materials and Structures/Materiaux et Constructions 48(4):919–928. https://doi.org/10.1617/s11527-013-0203-5
  • Losada A, Peña R, Viñas A, Hernández LE (2013) Caracterización geomecánica de rocas. Universidad de La Laguna, Parámetros mecánico-deformacionales y geoquímicos
  • Maringer FJ, Wiedner H, Cardellini F (2020) An innovative quick method for tracable measurement of radon 222 in drinking water. Appl Radiat Isot 155(September 2019):108907. https://doi.org/10.1016/j.apradiso.2019.108907
  • Moreno V, Bach J, Font L, Baixeras C, Zarroca M, Linares R, Roqué C (2016) Soil radon dynamics in the Amer fault zone: an example of very high seasonal variations. J Environ Radioact 151:293–303. https://doi.org/10.1016/j.jenvrad.2015.10.018
  • Padilla GD, Hernández PA, Padrõn E, Barrancos J, Pérez NM, Melián G et al (2013) Soil gas radon emissions and volcanic activity at El Hierro (Canary Islands): the 2011-2012 submarine eruption. Geochem Geophys Geosyst 14(2):432–447. https://doi.org/10.1029/2012GC004375
  • Petropoulos NP, Anagnostakis MJ, Simopoulos SE (2002) Photon attenuation, natural radioactivity content and radon exhalation rate of building materials. J Environ Radioact 61(3):257–269. https://doi.org/10.1016/S0265-931X(01)00132-1
  • Ruano-Ravina A, Narocki C, López-Jacob MJ, García Oliver A, Tierno C, M. de la C., Peón-González, J., & Barros-Dios, J. M. (2018) Indoor radon in Spanish workplaces. A pilot study before the introduction of the European Directive 2013/59/Euratom. Gac Sanit 33(6):563–567. https://doi.org/10.1016/j.gaceta.2018.05.006
  • Thu H, Van Thang N, Loan TTH, Van Dong N, Hao LC (2019) Natural radioactivity and radon emanation coefficient in the soil of Ninh Son region, Vietnam. Appl Geochem 104(March):176–183. https://doi.org/10.1016/j.apgeochem.2019.03.019
  • Troll VR, Carracedo JC (2016) The geology of El Hierro. In The Geology of the Canary Islands. https://doi.org/10.1016/b978-0-12-809663-5.00002-5
  • Verma D, Shakir Khan M, Zubair M (2012) Assessment of effective radium content and radon exhalation rates in soil samples. J Radioanal Nucl Chem 294(2):267–270. https://doi.org/10.1007/s10967-012-1694-1
  • Walczak K, Olszewski J, Zmyślony M (2016) Radon permeability of insulating building materials. Nukleonika 61(3):289–293. https://doi.org/10.1515/nuka-2016-0048
  • Yarmoshenko I, Vasilyev A, Malinovsky G, Bossew P, Žunić ZS, Onischenko A, Zhukovsky M (2016) Variance of indoor radon concentration: major influencing factors. Sci Total Environ 541:155–160. https://doi.org/10.1016/j.scitotenv.2015.09.077