Detection of anatomical point landmarks in medical images using fuzzy logic

  1. S. Alayón 1
  2. C.S. González 1
  3. L. Moreno 1
  4. R. Cárdenes 2
  5. E. Suárez 2
  6. J. Ruiz-Alzola 2
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    GRID grid.10041.34

  2. 2 Universidad de Las Palmas de Gran Canaria
    info

    Universidad de Las Palmas de Gran Canaria

    Las Palmas de Gran Canaria, España

    GRID grid.4521.2

Proceedings:
4th WSEAS International Conference on Applied Informatics and Communications

Publisher: World Scientific and Engineering Academy and Society

ISBN: 978-960-8457-06-5

Year of publication: 2004

Pages: 1-6

Type: Conference paper

Export: RIS

Bibliographic References

  • {Betke, M., Hong, H., Thomas, D., Prince C. and Ho, J. P., Landmark detection in the chest and registration of lung surfaces with an application to nodule registration, Medical Image Analysis, 7:3, 2003, pp. 265-281.
  • Bookstein, F. L., Thin-plate splines and the atlas problem for biomedical images, Proc. 12th International Conference on Information Processing in Medical Imaging - IPMI'91, 1991, pp. 326-342.
  • Estevez, J. I., Alayón, S., Moreno, L., Sigut, J. and Aguilar, R., Cytological images analysis with a genetic fuzzy finite state machine, International Journal of Medical Informatics, 2004, in press.
  • Hartkens, T., Rohr, K. and Stiehl, H. S., Evaluation of 3D operators for the detection of anatomical point landmarks in MR and CT images, Computer Vision and Image Understanding, 86(2), 2002, pp. 118-136.
  • Jang, J.-S. R., Sun, C.-T. and Mizutani, E., Neurofuzzy and soft computing. A computational approach to learning and machine intelligence, Matlab Curriculum Series. Prentice-Hall, Upper Saddle River, NJ 07458, 1997.
  • Knutsson, H., Representing local structure using tensors, The 6th Scandinavian Conference on Image Analysis, Oulu, Finland, 1989, pp. 244-251.
  • Mamdani, E., Applications of fuzzy algorithm for control a simple dynamic plant, Proc. of the IEE, 121(12), 1974, pp. 1585-1588.
  • Rohr, K., Landmark-based image analysis: using geometric and intensity models, Computacional Imaging and Vision Series, vol. 21, Kluwer Academic Publishers, Dordrecht Boston London, 2001.
  • Ruiz-Alzola, J., Kikinis, R. and Westin, C. F., Detection of point landmarks in multidimensional Tensor Data, Signal Processing, 81(10), 2001.
  • Westin, C.-F., Vector and tensor field filtering, Signal Processing for Computer Vision, chapter 11, Granlund and Knutsson, ed, 1995.
  • Westin, C.-F. and Knutsson, H., Estimation of Motion Vector Fields using Tensor Field Filtering, Proc. IEEE Int. Conf. on Image Proc., Austin, Texas, 1994.
  • Wörz, S. and Rohr, K., Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models, Proc. 18th International Conference on Information Processing in Medical Imaging - IPMI'03, vol. 2732, 2003, pp. 76-88.
  • Zadeh, L., Fuzzy sets, Information and Control, 8, 1965, pp. 338-353.