Application of a land surface model including fog deposition by a tree heath-laurel forest in the Garajonay National Park (La Gomera, Spain)

  1. Genki Katata 2
  2. Carlos M. Regalado 3
  3. Axel Ritter 1
  4. Haruyasu Nagai 2
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  2. 2 Japan Atomic Energy Agency
    info

    Japan Atomic Energy Agency

    Tōkai-mura, Japón

    ROR https://ror.org/05nf86y53

  3. 3 Instituto Canario de Investigaciones Agrarias
    info

    Instituto Canario de Investigaciones Agrarias

    San Cristóbal de La Laguna, España

Actas:
Jornadas de Investigación de la Zona no Saturada del Suelo. ZNS'09: Estudios de la Zona No Saturada del Suelo, Vol. IX - ZNS’09 (9ª. 2009. Barcelona)
  1. Orlando Silva Rojas (ed. lit.)
  2. Jesús Carrera Ramírez (ed. lit.)

Editorial: CIMNE

ISBN: 978-84-96736-83-2

Año de publicación: 2009

Páginas: 393-400

Tipo: Aportación congreso

Resumen

Se aplicó un modelo unidimensional multicapa atmósfera-suelo-vegetación (SOLVEG) que incluyedeposición de agua atmosférica (niebla). El modelo permitió cuantificar la distribución del contenido dehumedad en la zona no saturada y la cantidad de niebla interceptada que llega a la superficie del suelo de unacuenca de laurisilva en el Parque Nacional de Garajonay (La Gomera, España). El modelo permite dar cuentatanto de la deposición de agua atmosférica sobre hojas lanceoladas, como la captación de niebla por hojasaciculadas en un bosque mixto de fayal-brezal. El modelo se evaluó comparando medidas de contenido de aguaen el horizonte superficial del suelo y de transpiración con las predicciones del modelo SOLVEG obtenidas apartir de registros de variables micrometeorológicas y de captura artificial de niebla. El aporte anual de aguade niebla al suelo se estima en 110 mm, lo que equivale a un 18% de la precipitación. Es necesario, sinembargo, seguir investigando para reducir la incertidumbre de los parámetros del modelo y estimar así conmayor fiabilidad la contribución del agua de niebla al bosque de laurisilva

Referencias bibliográficas

  • Allen, R.G., L.S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations. Rome, 300 pp.
  • Bruijnzeel, L.A., 2001. Hydrology of tropical montane cloud forests: A Reassessment. Land Use Water Res. 1, 1.1-1.18. Genki Katata, Carlos M. Regalado, Axel Ritter and Haruyasu Nagai
  • Bruijnzeel, L.A., W. Eugster, and R. Burkard, 2005. Fog as a hydrologic input. In: Anderson, M.G., McDonnell, J. (eds.). Encyclopaedia of Hydrological Sciences, John Wiley & Sons, Ltd., Chichester, pp. 559-582.
  • Brutsaert, W.H., 1975. On a derivable formula for long-wave radiation from clear skies. Water Resour. Res. 11, 742-744.
  • Carsel, R.F., and R.S. Parrish, 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24, 755-769.
  • Crawford, T.M., and C.E. Duchon, 1999. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteorol. 38, 474-480.
  • Dane, J.H., and G.C. Topp, 2002. Methods of Soils Analysis, Part 4. SSSA Book Series, 5, 1692 pp.
  • Demoz, B., Jr. J.L. Collett, and Jr. B.C. Daube, 1996. On the Caltech active strand cloudwater collectors. Atmos. Res. 41, 47-62.
  • Friedlander, S.K., 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics. Oxford University Press, New York.
  • Førland, E.J., P. Allerup, B. Dahlström, E. Elomaa, T. Jonsson, H. Madsen, J. Perälä, P. Rissanen, H. Vedin, and F. Vejen, 1996. Manual for operational correction of Nordic precipitation data. Norwegian Meteorological Institute, Oslo, Norway.
  • Golubic, I., 2001. Vegetation analysis of laurel forest and similar stands within the research framework of the water balance in the Garajonay National Park, La Gomera (Canary Islands). Diploma Thesis, Essen University GH, Germany (in German).
  • Granier, A. 1985. Une nouvelle méthode pour la mesure des flux de sève dans le tronc des arbres. Ann. Sci. For. 42, 193-200 (in French).
  • Katata, G., 2009. Improvement of a land surface model for accurate prediction of surface energy and water balances. JAEA-Data/Code 2008- 033, Japan Atomic Energy Agency, 64 pp.
  • Katata, G., H. Nagai, H. Ueda, N. Agam, and P.R. Berliner, 2007. Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange in arid regions. J. Hydrometeor. 8, 1307-1324.
  • Katata, G., H. Nagai, T. Wrzesinsky, O. Klemm, W. Eugster, and R. Bukard, 2008. Development of a land surface model including cloud water deposition on vegetation. J. Appl. Meteorol. Climatol. 47, 2129-2146.
  • Klemm, O., T. Wrzesinskyand, and C. Scheer, 2005. Fog water flux at a canopy top: Direct measurement versus one-dimensional model. Atmos. Environ. 39, 5375-5386.
  • Lovett, G.M., 1984. Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos. Environ. 18, 361-371.
  • Morales D., M.S. Jiménez, A.M. González-Rodríguez, and J. Čermák, 1996. Laurel forests in Tenerife, Canary Islands. I. The site, stand structure and stand leaf area distribution. Trees 11, 34-40.
  • Nagai, H., 2002. Validation and sensitivity analysis of a new atmosphere-soil-vegetation model. J. Appl. Meteor. 41, 160-176.
  • Nagai, H., 2003. Validation and sensitivity analysis of a new atmosphere-soil-vegetation model. Part II: Impacts on in-canopy latent heat flux over a winter wheat field determined by detailed calculation of canopy radiation transmission and stomatal resistance. J. Appl. Meteor. 42, 434-451.
  • Nagai, H., 2004. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2. Japan Atomic Energy Institute Rep. JAERI-Data/Code 2004-014, 92 pp.
  • Nagai, H., 2005. Incorporation of CO2 exchange processes into a multilayer atmosphere-soil-vegetation model. J. Appl. Meteor. 44, 1574- 1592.
  • Nagai, H., and H. Yamazawa, 1999. Development of a one-dimensional atmosphere-soil-vegetation model. Japan Atomic Energy Research Institute Rep. 99-024, 88 pp.
  • Pérez de Paz, P.L., 1990. Garajonay National Park: World Heritage. Instituto Nacional para la Conservación de la Naturaleza, Excmo. Cabildo Insular de La Gomera, 367 pp (in Spanish).
  • Regalado, C.M., R. Muñoz-Carpena, A.R. Socorro, and J.M. Hernández Moreno, 2003. Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils. Geoderma 117, 313-330.
  • Regalado, C.M., A. Ritter, J. Álvarez-Benedí, and R. Muñoz-Carpena, 2005. Simplified method to estimate wetting front suction and soil sorptivity with the Philip-Dunne falling-head permeameter. Vadose Zone J. 4, 291-299.
  • Regalado, C.M., A. Ritter, and R. Becker, 2006. Comments on: “Monitoring soil water content profiles with a commercial TDR system: comparative field tests and laboratory calibration”. Vadose Zone J. 5, 1067-1068.
  • Ritter, A., F. Hupet, R. Muñoz-Carpena, S. Lambot, and M. Vanclooster. 2003. Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods. Agr. Water Manage., 59, 77-96.
  • Ritter, A., C.M. Regalado, and G. Aschan, 2008. Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based model. J. Hydrometeor. 9, 920-935.
  • Ritter, A., C.M. Regalado, and G. Aschan, 2009a. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain). Tree Physiol. 29, 517-528.
  • Ritter, A., C.M. Regalado, and R. Muñoz Carpena, 2009b. Temporal water dynamics in the top-soil of a forest watershed: common patterns and contribution of explanatory hydrological fluxes. Vadose Zone J. 8, 437-449.
  • Sharon, D., 1980. Distribution of hydrologically effective rainfall incident on sloping ground. J. Hydrol. 46, 165-188.
  • Soil Survey Staff, 1999. Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. 2nd edition. USDANRCS-US Gov. Printing Office, Washington, DC.
  • Thissen, B., 2001. Investigation to assess the influence of soil on the water balance of plots in the Garajonay National Park, La Gomera, Spain. Diploma Thesis, Essen University GH, Germany (in German).
  • Weathers, K.C., G.M. Lovett, and G.E. Likens, 1995. Cloud deposition to a spruce forest edge, Atmos. Environ. 29, 665-672.
  • Yamazawa, H., and H. Nagai, 1997. Development of a one-dimensional atmosphere-bare soil model. Japan Atomic Energy Research Institute Rep. 97-041, 56 pp.