Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting.

  1. Cecile Meier
  2. Drago Díaz Alemán
  3. Itahisa Pérez Conesa
  4. Jose Luis Saorín Pérez 1
  5. Jorge de la Torre-Cantero 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Actas:
International Research Conference (IRC). Amsterdam, 2019

Editorial: International Scholarly and Scientific Research & Innovation

ISSN: 0000000091950263

Año de publicación: 2019

Páginas: 289-293

Tipo: Aportación congreso

Resumen

In this work, two ways of creating small-sized metalsculptures are proposed: the first by means of microcasting and thesecond by electroforming from models printed in 3D using anFDM (Fused Deposition Modeling) printer or using a DLP (DigitalLight Processing) printer. It is viable to replace the wax in theprocesses of the artistic foundry with 3D printed objects. In thistechnique, the digital models are manufactured with resin using alow-cost 3D FDM printer in polylactic acid (PLA). This material isused, because its properties make it a viable substitute to wax,within the processes of artistic casting with the technique of lostwax through Ceramic Shell casting. This technique consists ofcovering a sculpture of wax or in this case PLA with several layersof thermoresistant material. This material is heated to melt thePLA, obtaining an empty mold that is later filled with the moltenmetal. It is verified that the PLA models reduce the cost and timecompared with the hand modeling of the wax. In addition, you canmanufacture parts with 3D printing that are not possible to createwith manual techniques. However, the sculptures created with thistechnique have a size limit. The problem is that when printedpieces with PLA are very small, they lose detail, and the laminartexture hides the shape of the piece. DLP type printer allowsobtaining more detailed and smaller pieces than the FDM. Suchsmall models are quite difficult and complex to melt using the lostwax technique of Ceramic Shell casting. But, as an alternative,there are microcasting and electroforming, which are specialized increating small metal pieces such as jewelry ones. The microcastingis a variant of the lost wax, that consists of introducing the modelin a cylinder in which the refractory material is also poured. Themolds are heated in an oven to melt the model and cook them.Finally, the metal is poured into the still hot cylinders that rotate ina machine at high speed to properly distribute all the metal.Because microcasting requires expensive material and machineryto melt a piece of metal, electroforming is an alternative for thisprocess. The electroforming uses models in different materials; inthis case, 3D printed microsculptures, which can be subjected togalvanic baths that cover the work of a very thin layer of metal.This work will investigate the recommended size to use 3Dprinters, both with PLA and resin. In this study, first tests are beingdone to validate use of microsculptures, printed on resin using aDLP printer, for electroforming with low-cost kits.

Referencias bibliográficas

  • [1] M. P. Groover, Fundamentos de manufactura moderna: materiales, procesos y sistemas, Lehigh: Pearson Educación, 1997.
  • [2] R. W. Heine, C. R. Loper y P. C. Rosenthal, Principles of Metal Casting, New Delhi: Tata McGraw-Hill Education, 1955.
  • [3] S. Kalpakjian y S. R. Schmid, Manufactura, ingeniería y tecnología, México: Pearson Educación, 2002.
  • [4] S. Guharaja, A. N. Haq y K. M. Karuppannan, «Optimization of green sand casting process parameters by using Taguchi’s method,» The International Journal of Advanced Manufacturing Technology, pp. 30(11-12), 1040-1048, 2006.
  • [5] T. R. Smith .Iowa Patente US3157924A, 1964.
  • [6] L. Alting y G. Boothroyd, Procesos para ingeniería de manufactura, México: Alfaomega, 1990.
  • [7] J. A. Benavente, Fundición a la cera perdida (Microfusión), Barcelona: Alsina, 1992.
  • [8] K. Krekeler, Microfusión. Fundición con modelo perdido, Barcelona: Gustavo Gili, 1971.
  • [9] M. Le Van, The Penland Book of Jewelry: Master Classes in Jewelry Techniques, New York: Lark Books, 2005.
  • [10] L. Serna y F. Albán, «Ácido poliláctico (PLA): Propiedades y aplicaciones,» Ingeniería y competitividad, vol. 5, nº 1, pp. 16-26, 2011.
  • [11] J. Horvath, L. Hoge y R. Cameron, 3D Printing. In Practical Fashion Tech, Berkeley, CA: Apress, 2016.
  • [12] J. Micallef, «What’s possible with 3D printing?,» de In Beginning Design for 3D Printing, Berkeley, CA, Apress, 2015, pp. 1-30.
  • [13] M. D. Díaz-Alemán, C. Meier, I. Pérez-Conessa y J. L. Saorin, «Fundición artística de objetos complejos impresos en 3D con PLA (ácido poliláctico) como alternativa al modelo de cera,» Arte, Individuo y Sociedad (AIS), pp. 1-8 (In press), 2019.
  • [14] L. Muñoz-Mesa y J. H. Sánchez-Trujillo, «El impacto de la impresión 3D en la joyería,» Lámpsakos, pp. 1(16), 89-97, 2017.
  • [15] J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen y M. Rombouts, «Binding mechanisms in selective laser sintering and selective laser melting,» Rapid prototyping journal, vol. 11, nº 1, pp. 26-36, 2005.
  • [16] J. D. Camba, A. Bonnet de León, J. de la Torre-Cantero, J. L. Saorín y M. Contero, «Application of low-cost 3D scanning technologies to the development of educational augmented reality content,» de IEEE Frontiers in Education Conference (FIE), Erie, PA, USA, 2016.
  • [17] H. S. Fuenmayor Pirela , S. Vazquez, J. Vargas y M. Meneses Carrera, Instituto Invenio De Tecnologías Emergentes, Diplomado En Diseño Y Fabricación, 2016.
  • [18] Waxco, «Waxco,» 8 marzo 2019. [En línea]. Available: http://waxco.es/productos/microfusion/coladas.
  • [19] M. Monzón Verona, P. Hernández Castellano, M. D. Marrero Alemán y A. Benítez Vega, «Aplicaciones del electroconformado a la fabricación rápida de herramientas,» de 8º Congreso Iberoamericano de Ingeniería mecánica CIBIM8, Perú, 2007.
  • [20] R. Parkinson, «Electroforming — a unique metal fabrication process,» Nickel Development Institute, Toronto, Canada, 1999.