Shallow geothermal energy: theory and application

  1. García Gil, Alejandro
  2. Garrido Schneider, Eduardo Antonio
  3. Mejías Moreno, Miguel
  4. Santamarta Cerezal, Juan Carlos

Editorial: Springer

ISSN: 2364-6454 2364-6462

ISBN: 9783030922573 9783030922580

Año de publicación: 2022

Tipo: Libro

Referencias bibliográficas

  • Abesser C (2010) Open-loop ground source heat pumps and the groundwater systems: a literature review of current applications, regulations and problems. NER Council, British Geological Survey Nottingham, p 31
  • Alcaraz M, García-Gil A, Vázquez-Suñé E, Velasco V (2016) Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts. Sci Total Environ 543(Part A):536–546. https://doi.org/10.1016/j.scitotenv.2015.11.022
  • Anaissie EJ, Penzak SR, Dignani MC (2002) The hospital water supply as a source of nosocomial infections: a plea for action. Arch Intern Med 162(13):1483–1492. https://doi.org/10.1001/archinte.162.13.1483
  • Andrews CB (1978) The impact of the use of heat pumps on ground-water temperatures. Groundwater 16(6):437–443. https://doi.org/10.1111/j.1745-6584.1978.tb03259.x
  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd ed. CRC Press, Boca Raton
  • Arthur S, Streetly HR, Valley S, Streetly MJ, Herbert AW (2010) Modelling large ground source cooling systems in the Chalk aquifer of central London. Q J Eng Geol Hydrogeol 43(3):289–306. https://doi.org/10.1144/1470-9236/09-039
  • ASHRAE (2016) Ashrae handbook 2016: HVAC systems and equipment: SI edition. ASHRAE
  • Attard G, Rossier Y, Winiarski T, Eisenlohr L (2016) Deterministic modeling of the impact of underground structures on urban groundwater temperature. Sci Total Environ 572:986–994. https://doi.org/10.1016/j.scitotenv.2016.07.229
  • Bayer P, Attard G, Blum P, Menberg K (2019) The geothermal potential of cities. Renew Sustain Energy (in press)
  • Benz SA, Bayer P, Menberg K, Jung S, Blum P (2015) Spatial resolution of anthropogenic heat fluxes into urban aquifers. Sci Total Environ 524–525:427–439. https://doi.org/10.1016/j.scitotenv.2015.04.003
  • Bezelgues-Courtade S, Durst P, Garnier F, Ignatiadis I (2013) ImPAC Lyon: evaluer l’impact environnemental et thermique de l’exploitation des aquifers superficiels pour la climatisation. Aspectos Tecnológicos e Hidrogeológicos de la Geotermia. AIH-GE, Barcelona, pp 51–58
  • Bonte M, Stuyfzand PJ, van Breukelen BM (2014) Reactive transport modeling of thermal column experiments to investigate the impacts of aquifer thermal energy storage on groundwater quality. Environ Sci Technol 48(20):12099–12107. https://doi.org/10.1021/es502477m
  • Böttcher F, Casasso A, Götzl G, Zosseder K (2019) TAP—thermal aquifer potential: a quantitative method to assess the spatial potential for the thermal use of groundwater. Renew Energy 142:85–95. https://doi.org/10.1016/j.renene.2019.04.086
  • Brielmann H, Griebler C, Schmidt SI, Michel R, Lueders T (2009) Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol Ecol 68(3):273–286. https://doi.org/10.1111/j.1574-6941.2009.00674.x
  • Brons HJ, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res 25(6):729–736. https://doi.org/10.1016/0043-1354(91)90048-U
  • Buffie C, Pamer E (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801. https://doi.org/10.1038/nri3535
  • Burté L (2018) Study of clogging phenomena and treatment optimisation of geothermal operations on shallow aquifers. Université Rennes 1
  • Cateau E, Delafont V, Hechard Y, Rodier MH (2014) Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 87(3):131–140. https://doi.org/10.1016/j.jhin.2014.05.001
  • Christoffersen K, Andersen N, Søndergaard M, Liboriussen L, Jeppesen E (2006) Implications of climate-enforced temperature increases on freshwater pico- and nanoplankton populations studied in artificial ponds during 16 months. Hydrobiologia 560(1):259–266. https://doi.org/10.1007/s10750-005-1221-2
  • Dalla Santa G, Galgaro A, Tateo F, Cola S (2016) Modified compressibility of cohesive sediments induced by thermal anomalies due to a borehole heat exchanger. Eng Geol 202:143–152. https://doi.org/10.1016/j.enggeo.2016.01.011
  • EPA (1997) Manual on environmental issues related to geothermal heat pump systems. USEP Agency, National Service Center for Environmental Publications, p 98
  • Epting J et al (2017) The thermal impact of subsurface building structures on urban groundwater resources—a paradigmatic example. Sci Total Environ 596–597:87–96. https://doi.org/10.1016/j.scitotenv.2017.03.296
  • Fasci ML, Lazzarotto A, Acuna J, Claesson J (2018) Thermal influence of neighbouring GSHP installations: relevance of heat load temporal resolution. IGSHPA Research Track. International Ground Source Heat Pump Association, Stockholm. https://doi.org/10.22488/okstate.18.000019
  • Fascì ML, Lazzarotto A, Acuna J, Claesson J (2019) Analysis of the thermal interference between ground source heat pump systems in dense neighbourhoods. Sci Technol Built Environ 25:1–21. https://doi.org/10.1080/23744731.2019.1648130
  • Ferguson G (2006) Potential use of particle tracking in the analysis of low-temperature geothermal developments. Geothermics 35(1):44–58. https://doi.org/10.1016/j.geothermics.2005.11.001
  • Ferguson G (2009) Unfinished business in geothermal energy. Ground Water 47(2):167–167. https://doi.org/10.1111/j.1745-6584.2008.00528.x
  • Ferguson G, Woodbury AD (2006) Observed thermal pollution and post-development simulations of low-temperature geothermal systems in Winnipeg, Canada. Hydrogeol J 14(7):1206–1215. https://doi.org/10.1007/s10040-006-0047-y
  • Fujii H, Itoi R, Fujii J, Uchida Y (2005) Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling. Geothermics 34(3):347–364. https://doi.org/10.1016/j.geothermics.2005.04.001
  • Gabrielsson A, Bergdahl U, Moritz L (2000) Thermal energy storage in soils at temperatures reaching 90 °C. J Sol Energy Eng 122(1):3–8. https://doi.org/10.1115/1.556272
  • Galgaro A, Cultrera M (2013) Thermal short circuit on groundwater heat pump. Appl Therm Eng 57(1–2):107–115. https://doi.org/10.1016/j.applthermaleng.2013.03.011
  • García-Gil A, Vázquez-Suñe E, Schneider EG, Sánchez-Navarro JÁ, Mateo-Lázaro J (2014) The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. Sci Total Environ 485–486:575–587. https://doi.org/10.1016/j.scitotenv.2014.03.123
  • García-Gil A, Vázquez-Suñé E, Sánchez-Navarro JA, Lázaro J (2015a) Recovery of energetically overexploited urban aquifers using surface water. J Hydrol 1(1):111
  • García-Gil A, Vázquez-Suñé E, Sánchez-Navarro JÁ, Mateo Lázaro J, Alcaraz M (2015b) The propagation of complex flood-induced head wavefronts through a heterogeneous alluvial aquifer and its applicability in groundwater flood risk management. J Hydrol 527:402–419. https://doi.org/10.1016/j.jhydrol.2015.05.005
  • García-Gil A et al (2016a) A reactive transport model for the quantification of risks induced by groundwater heat pump systems in urban aquifers. J Hydrol 542:719–730. https://doi.org/10.1016/j.jhydrol.2016.09.042
  • García-Gil A et al (2016b) A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater. Sci Total Environ 572:1047–1058. https://doi.org/10.1016/j.scitotenv.2016.08.010
  • García-Gil A et al (2018a) Occurrence of pharmaceuticals and personal care products in the urban aquifer of Zaragoza (Spain) and its relationship with intensive shallow geothermal energy exploitation. J Hydrol 566:629–642. https://doi.org/10.1016/j.jhydrol.2018.09.066
  • García-Gil A et al (2018b) Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation. Sci Total Environ 633:765–775. https://doi.org/10.1016/j.scitotenv.2018.03.245
  • Garnier F (2012) Contribution to the biogeochemical evaluation of the impacts related to the geothermic exploitation of the near-surface aquifers: experiments and simulations on a pilot and real installation scale. Université d'Orléans
  • Goldscheider N, Bechtel TD (2009) Editors’ message: the housing crisis from underground—damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany. Hydrogeol J 17(3):491–493. https://doi.org/10.1007/s10040-009-0458-7
  • Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54(4):649–677. https://doi.org/10.1111/j.1365-2427.2008.02013.x
  • Griebler C et al (2016) Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ Earth Sci 75(20):1391. https://doi.org/10.1007/s12665-016-6207-z
  • Gringarten A, Sauty J (1975) A theoretical study of heat extraction from aquifers with uniform regional flow. J Geophys Res 80(35):4956–4962
  • Gultekin A, Aydin M, Sisman A (2016) Thermal performance analysis of multiple borehole heat exchangers. Energy Convers Manag 122:544–551. https://doi.org/10.1016/j.enconman.2016.05.086
  • Hahn HJ (2006) The GW-Fauna-Index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 36(2):119–137. https://doi.org/10.1016/j.limno.2006.02.001
  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13(1):98–111. https://doi.org/10.1007/s10040-004-0421-6
  • Hecht-Mendez J, Molina-Giraldo N, Blum P, Bayer P (2010) Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Ground Water 48(5):741–756. https://doi.org/10.1111/j.1745-6584.2010.00678.x
  • Herbert A, Arthur S, Chillingworth G (2013) Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool. Appl Energy 109:94–103. https://doi.org/10.1016/j.apenergy.2013.03.005
  • Hunt RJ, Wilcox DA (2003) Ecohydrology—why hydrologists should care. Groundwater 41(3):289–289. https://doi.org/10.1111/j.1745-6584.2003.tb02592.x
  • Janža M (2017) Management of the groundwater resource beneath the city of Ljubljana. Procedia Eng 209:100–103. https://doi.org/10.1016/j.proeng.2017.11.135
  • John DE, Rose JB (2005) Review of factors affecting microbial survival in groundwater. Environ Sci Technol 39(19):7345–7356. https://doi.org/10.1021/es047995w
  • Kim H, Lee J-Y (2019) Effects of a groundwater heat pump on thermophilic bacteria activity. Water 11(10)
  • Klotzbücher T, Kappler A, Straub KL, Haderlein SB (2007) Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole heat exchangers. Geothermics 36(4):348–361. https://doi.org/10.1016/j.geothermics.2007.03.005
  • Koh E-H, Lee E, Lee K-K (2016) Impact of leaky wells on nitrate cross-contamination in a layered aquifer system: methodology for and demonstration of quantitative assessment and prediction. J Hydrol 541:1133–1144. https://doi.org/10.1016/j.jhydrol.2016.08.019
  • Kupfersberger H, Rock G, Draxler JC (2017) Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria. J Hydrol 552:564–577. https://doi.org/10.1016/j.jhydrol.2017.07.030
  • Kurevija T, Vulin D, Krapec V (2012) Effect of borehole array geometry and thermal interferences on geothermal heat pump system. Energy Convers Manag 60:134–142. https://doi.org/10.1016/j.enconman.2012.02.012
  • Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882. https://doi.org/10.1029/95wr00661
  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, NJ
  • Law YLE, Dworkin SB (2016) Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps. Appl Energy 179:1032–1047. https://doi.org/10.1016/j.apenergy.2016.07.048
  • Lienen T et al (2017) Effects of thermal energy storage on shallow aerobic aquifer systems: temporary increase in abundance and activity of sulfate-reducing and sulfur-oxidizing bacteria. Environ Earth Sci 76(6):261. https://doi.org/10.1007/s12665-017-6575-z
  • Lippmann MJ, Tsang CF (1980) Ground-water use for cooling: associated aquifer temperature changes. Groundwater 18(5):452–458. https://doi.org/10.1111/j.1745-6584.1980.tb03420.x
  • Luo J, Kitanidis PK (2004) Fluid residence times within a recirculation zone created by an extraction–injection well pair. J Hydrol 295(1):149–162. https://doi.org/10.1016/j.jhydrol.2004.03.006
  • Madigan MT, Martinko JM (2006) Brock biology of microorganisms. Pearson Prentice Hall, Upper Saddle River, NJ
  • Milnes E, Perrochet P (2013) Assessing the impact of thermal feedback and recycling in open-loop groundwater heat pump (GWHP) systems: a complementary design tool. Hydrogeol J 21(2):505–514. https://doi.org/10.1007/s10040-012-0902-y
  • Mueller MH, Huggenberger P, Epting J (2018) Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources. Sci Total Environ 627:1121–1136. https://doi.org/10.1016/j.scitotenv.2018.01.250
  • Park Y, Kim N, Lee J-Y (2015) Geochemical properties of groundwater affected by open loop geothermal heat pump systems in Korea. Geosci J 1–12. https://doi.org/10.1007/s12303-014-0059-x
  • Penner E (1962) Ground freezing and frost heaving. Canadian Building Digest, No. CBD-26. https://doi.org/10.4224/40000788
  • Powell KL et al (2003) Microbial contamination of two urban sandstone aquifers in the UK. Water Res 37(2):339–352. https://doi.org/10.1016/S0043-1354(02)00280-4
  • Rivera JA, Blum P, Bayer P (2016) Influence of spatially variable ground heat flux on closed-loop geothermal systems: line source model with nonhomogeneous Cauchy-type top boundary conditions. Appl Energy 180:572–585. https://doi.org/10.1016/j.apenergy.2016.06.074
  • Rutsch M et al (2008) Towards a better understanding of sewer exfiltration. Water Res 42(10–11):2385–2394. https://doi.org/10.1016/j.watres.2008.01.019
  • Rybach L, Mongillo M (2006) Geothermal sustainability—a review with identified research needs. Geotherm Resour Council (GRC) Trans 30:8
  • Saito T et al (2016) Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling. Water Res 94:120–127. https://doi.org/10.1016/j.watres.2016.01.043
  • Sanner B, Knoblich K (1998) High temperature underground thermal energy storage. In: International geothermal conference, New Jersey, USA
  • Sciacovelli A, Guelpa E, Verda V (2014) Multi-scale modeling of the environmental impact and energy performance of open-loop groundwater heat pumps in urban areas. Appl Therm Eng 71(2):780–789. https://doi.org/10.1016/j.applthermaleng.2013.11.028
  • SGU (2016) Vägledning för att borra brunn. Sveriges Geologiska Undersökning, Geological Survey of Sweden, Uppsala
  • Shu B, Ma B (2015) Study of ground collapse induced by large diameter horizontal directional drilling in sand layer using numerical modeling. Can Geotech J 52:150226182447000. https://doi.org/10.1139/cgj-2014-0388
  • Snow J (1855) On the mode of communication of cholera. John Churchill, London
  • Somerton WH (1992) Chapter IV. Thermal expansion of rocks, developments in petroleum science. Elsevier, pp 29–38. https://doi.org/10.1016/S0376-7361(09)70024-X
  • Sommer W, Valstar J, Leusbrock I, Grotenhuis T, Rijnaarts H (2015) Optimization and spatial pattern of large-scale aquifer thermal energy storage. Appl Energy 137:322–337. https://doi.org/10.1016/j.apenergy.2014.10.019
  • Stauffer F, Bayer P, Blum P, Giraldo NM, Kinzelbach W (2013) Thermal use of shallow groundwater. Taylor & Francis, Boca Raton
  • Strack ODL (1989) Groundwater mechanics. Prentice Hall, Englewood Cliffs, NJ
  • Svec OJ, Palmer JHL (1989) Performance of a spiral ground heat exchanger for heat pump application. Int J Energy Res 13(5):503–510. https://doi.org/10.1002/er.4440130502
  • Urich C, Sitzenfrei R, Möderl M, Rauch W (2010) Einfluss der Siedlungsstruktur auf das thermische Nutzungspotential von oberflächennahen Aquiferen. Oesterr Wasser Abfallwirtsch 62(5–6):113–119. https://doi.org/10.1007/s00506-010-0188-z
  • VDI4640/4 (2004) Thermal use of the underground—direct uses. VDIRichtlinien 4640, Part 4 VDI/DIN Handbuck Energietechnik. Verlag, B., Berlin
  • Verda V, Guelpa E, Kona A, Lo Russo S (2012) Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations. Energy 48(1):40–46. https://doi.org/10.1016/j.energy.2012.07.001
  • West JM, Grogan HA, McKinley IG (1991) The role of microbiology in the geological containment of radioactive wastes. Dev Geochem 6:205–215. https://doi.org/10.1016/B978-0-444-88900-3.50024-2
  • Zhu K, Blum P, Ferguson G, Balke K, Bayer P (2010b) The geothermal potential of urban heat islands. Environ Res Lett 5(4). https://doi.org/10.1088/1748-9326/5/4/044002