Anomaly Detection Over an Ultrasonic Sensor in an Industrial Plant
- Esteban Jove Pérez 12
- José-Luis Casteleiro-Roca 1
- José Manuel González Cava 2
- Héctor Quintián Pardo 1
- Héctor Alaiz Moretón 3
- Bruno Baruque Zanón 4
- Juan Albino Méndez Pérez 2
- José Luis Calvo Rolle 1
-
1
Universidade da Coruña
info
-
2
Universidad de La Laguna
info
-
3
Universidad de León
info
-
4
Universidad de Burgos
info
- Hilde Pérez García (ed. lit.)
- Lidia Sánchez González (ed. lit.)
- Manuel Castejón Limas (ed. lit.)
- Héctor Quintián Pardo (ed. lit.)
- Emilio Santiago Corchado Rodríguez (ed. lit.)
Editorial: Springer Suiza
ISBN: 978-3-030-29859-3
Any de publicació: 2019
Pàgines: 492-503
Congrés: Hybrid Artificial Intelligent Systems (14. 2019. León)
Tipus: Aportació congrés
Resum
The significant industrial developments in terms of digitalization and optimization, have focused the attention on anomaly detection techniques. This work presents a detailed study about the performance of different one-class intelligent techniques, used for detecting anomalies in the performance of an ultrasonic sensor. The initial dataset is obtained from a control level plant, and different percentage variations in the sensor measurements are generated. For each variation, the performance of three one-class classifiers are assessed, obtaining very good results.