Proposed recharge of island aquifer by deep wells with regenerated water in Gran Canaria (Spain)

  1. Ríos, Iván Hernández
  2. Cruz-Pérez, Noelia
  3. Chirivella-Guerra, José I.
  4. García-Gil, Alejandro
  5. Rodríguez-Alcántara, Joselin S.
  6. Rodríguez-Martín, Jesica
  7. Marazuela, Miguel Á.
  8. Santamarta, Juan C.
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Groundwater for Sustainable Development

ISSN: 2352-801X

Año de publicación: 2023

Volumen: 22

Páginas: 100959

Tipo: Artículo

DOI: 10.1016/J.GSD.2023.100959 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Groundwater for Sustainable Development

Resumen

Managed aquifer recharge (MAR) and, in particular, recharge by direct injection into the aquifer through wells or boreholes allows for a series of very interesting solutions to solve various technical and environmental problems related to management of the urban water cycle. These problems include the overexploitation of water resources, marine intrusion or contamination of groundwater by irrigation returns. The island of Gran Canaria presents several of these problems; thus, the feasibility of implementing a recharge system has been studied to provide a solution to some of them, using a resource of great potential such as reclaimed water. A detailed characterization of groundwater quality in the study area was carried out, complemented by a field campaign with water sampling from the surrounding catchments, in situ analysis and subsequent laboratory analysis. Specifically, an MBR treatment with disinfection is proposed, where the final conclusions indicate that this is a technically and economically viable project, innovative in its application on islands, a priori with an acceptable productive recharge capacity, possibly scalable after the experimental phase and extrapolable to other locations with similar conditions. In addition, it presents a set of important environmental benefits with respect to conservation of and improvement of the state of the groundwater bodies in the studied area, as well contributing to knowledge of and research into water management in volcanic lands and islands.

Información de financiación

Financiadores

Referencias bibliográficas

  • Abd-elaty, (2022)
  • Barba, (2019), Hydrol. Earth Syst. Sci., 23, pp. 139, 10.5194/hess-23-139-2019
  • Besser, (2021), J. Afr. Earth Sci., 177
  • Besser, (2021), Environ. Dev. Sustain., 23, pp. 11677, 10.1007/s10668-020-01135-9
  • (2007), pp. 23
  • Cabrera, (2013), Temas Actuales de La Hidrología Subterránea, 8
  • (2013)
  • Cruz-Fuentes, (2014), Sci. Total Environ., 484, pp. 154, 10.1016/j.scitotenv.2014.03.041
  • Cruz-Pérez, (2022), Water, 14, pp. 1
  • Custodio, (2016), Sci. Total Environ., 557–558, pp. 425, 10.1016/j.scitotenv.2016.03.038
  • Custodio, (2000), Bol. Geol. Min., 111, pp. 107
  • Custodio, (2015), Water (Switzerland), 7, pp. 2952
  • Dewandel, (2021), pp. 1009
  • Dillon, (2005), Hydrogeol. J., 13, pp. 313, 10.1007/s10040-004-0413-6
  • Escalante, (2020), Acque Sotterranee - Italian Journal of Groundwater, 9, pp. 7
  • (2000), pp. 72
  • Fernández Escalante, (2010)
  • Gale, (2005), pp. 30
  • García-Menéndez, (2021), Appl. Geochem., 126, 10.1016/j.apgeochem.2020.104866
  • Gasco Cavero, (2023), Sci. Total Environ., 872
  • Gómez-Gotor, (2018), Desalination, 428, pp. 86, 10.1016/j.desal.2017.10.051
  • Hamed, (2022), Irrigat. Drain., 71, pp. 137, 10.1002/ird.2647
  • Hasan, (2019), Water, 11, 10.3390/w11122459
  • Herrera, (2003), Bol. Geol. Min., 114, pp. 433
  • Jahangirzadeh, (2021), Water Resour. Manag., 35, pp. 5169, 10.1007/s11269-021-02993-2
  • Jeong, (2018), Geosci. J., 22, pp. 667, 10.1007/s12303-017-0073-x
  • Jodar-Abellan, (2019), Water, 11, 10.3390/w11051009
  • Jódar, (2022), Sci. Total Environ., 825, 10.1016/j.scitotenv.2022.153937
  • Kagabu, (2020), J. Hydrol., 582, 10.1016/j.jhydrol.2019.124464
  • Liu, (2016), vol. 54, pp. 425
  • Majumdar, (2021), Groundwater, 59, pp. 629, 10.1111/gwat.13092
  • Martín Rodríguez, (2013)
  • Mauck, (2021), WaterSA, 47, pp. 505
  • Missimer, (2011), Ground Water, 49, pp. 771, 10.1111/j.1745-6584.2011.00846.x
  • (1975), pp. 40
  • Mohieldeen, (2021), Sci. Rep., 11, pp. 1, 10.1038/s41598-021-97593-w
  • Naranjo Ayala, (2008)
  • Ncibi, (2022), Water (Switzerland), 14
  • Ortiz Villalobos, (2012)
  • Ortuño, (2012), Water Sci. Technol., 66, pp. 2083, 10.2166/wst.2012.423
  • Ousrhire, (2022), Water Pract. Technol., 17, pp. 1706, 10.2166/wpt.2022.082
  • Plumlee, (2022), J. AWWA (Am. Water Works Assoc.), 114, pp. 10, 10.1002/awwa.1975
  • Pulido-Bosch, (1995), Environ. Geol., 26, pp. 57, 10.1007/BF00776033
  • Ricart, (2019), Urban Water J., 16, pp. 677, 10.1080/1573062X.2020.1726408
  • Ruiz-García, (2019), Water, 11, 10.3390/w11040754
  • Santamarta, (2013)
  • Sharip, (2012), Biol. Invasions, 14, pp. 1029, 10.1007/s10530-011-0137-1
  • (1975), pp. 262
  • Valhondo, (2016), Hydrol. Earth Syst. Sci., 20, pp. 4209, 10.5194/hess-20-4209-2016
  • Vargas-Amelin, (2014), J. Hydrol., 518, pp. 243, 10.1016/j.jhydrol.2013.11.035
  • Villanueva, (1984), pp. 435
  • Waterhouse, (2020), Calif. Agric., 74, pp. 144, 10.3733/ca.2020a0020
  • Yuan, (2017), vol. 172, pp. 294