Análisis factorial confirmatorio del IPAM en escolares de tercer curso de primaria
- 1 Universidad de La Laguna.
ISSN: 1667-4545
Año de publicación: 2017
Volumen: 17
Número: 2
Tipo: Artículo
Otras publicaciones en: Revista Evaluar
Resumen
Este estudio pretende evaluar la estructura factorial del instrumento Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM) mediante la técnica de análisis factorial confirmatorio (AFC). Con este fin, se ha llevado a cabo un estudio longitudinal con una muestra de 234 alumnos de tercer curso de educación primaria de las Islas Canarias, a los que se administró el instrumento IPAM, un instrumento de medición basado en el currículo (CBM, por sus siglas en inglés, curriculum-based measurement), y cuyo principal objetivo es el cribado universal y la evaluación del progreso en el aprendizaje en matemáticas del alumnado de educación primaria. Este instrumento está compuesto por tres medidas paralelas (A, B y C), que pretenden medir una misma estructura latente, el sentido numérico, por medio de la resolución de cinco tareas de fluidez (comparación numérica, operaciones de dos dígitos, series numéricas, operaciones de un dígito y valor de posición). El IPAM fue aplicado en tres momentos diferentes a lo largo del año escolar (i.e., otoño, invierno y primavera) y los resultados del AFC mostraron un buen ajuste del modelo propuesto en los distintos momentos de medida.
Referencias bibliográficas
- Andrews, P., & Sayers, J. (2015). Identifying opportunities for grade one children to acquire foundational number sense: Developing a framework for cross cultural classroom analyses. Early Childhood Education Journal, 43(4), 257-267. doi: 10.1007/s10643-014-0653-6
- Cragg, L., & Gilmore, C. (2014). Skills underlying ma-thematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63-68. doi: 10.1016/j.tine.2013.12.001
- Dehaene, S. (2009). Origins of mathematical intui-tions. The case of arithmetic. Annals of the New York Academy of Sciences, 1156(1), 232-259. doi: 10.1111/j.1749-6632.2009.04469.x
- De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469-479. doi: 10.1016/j.jecp.2009.01.010
- Dyson, N. I., Jordan, N. C., & Glutting, J. (2011). A number sense intervention for low-income kindergart-ners at risk for mathematics difficulties. Journal of Learning Disabilities, 46(2), 166-181. doi: 10.1177/0022219411410233
- Foegen, A., Jiban, C., & Deno, S. (2007). Progress monitoring measures in mathematics. A review of the literature. The Journal of Special Education, 41(2), 121-139. doi: 10.1177/00224669070410020101
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18, 39-50. doi: 10.2307/3151312
- Fuchs, L. S., Fuchs, D., Compton, D. L., Powel, S. R., Seethaler, P. M., Capizzi, A. M. ... Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29-43. doi: 10.1037/0022-0663.98.1.29
- Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23-27. doi: 10.1177/0963721412469398
- Gersten, R., Clarke, B., Jordan, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, C. (2012). Universal screening in mathematics for the primary grades: Beginnings of a research base. Council for Exceptional Children, 78(4), 423-445. doi: 10.1177/001440291207800403
- Hernández, J. A., & Betancort, M. (2016). ULLRTool-box. Disponible en https://sites.google.com/site/ullrtoolbox
- Hassinger-Das, B., Jordan, N. C., Glutting, J., Irwin, C., & Dyson, N. (2014). Domain-general mediators of the relation between kindergarten number sense and first-grade mathematics achievement. Journal of Experimental Child Psychology, 118, 78-92. doi: 10.1016/j.jecp.2013.09.008
- Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. doi: 10.1016/j.jecp.2008.04.001
- Jiménez, J. E., & De León, S. (2016). Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM). Universidad de La Laguna. Manuscrito sin publicar.
- Jiménez, J. E., & De León, S. (2017). Análisis factorial confirmatorio de Indicadores de Progreso de Aprendizaje en Matemáticas (IPAM) en escolares de primer curso de primaria. European Journal of Investigation in Health, Psychology and Education, 7, 31-45. Recuperado de https://formacionasunivep.com/ejih-pe/index.php/ejihpe
- Jitendra, A. K., Dupuis, D. N., & Zaslofsky, A. F. (2014). Curriculum-based measurement and standards-based mathematics: Monitoring the arithmetic word problem-solving performance of third-grade students at risk for mathematics difficulties. Learning Disability Quarterly, 37(4), 241-251. doi: 10.1177/0731948713516766
- Jordan, N. C., Gutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82-88. doi: 10.1016/j.lindif.2009.07.004
- Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850-867. doi: 10.1037/a0014939
- Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15(1), 60-68. doi: 10.1002/ddrr.46
- Jöreskog, K., & Sörbom, D. (1996-2001). LISREL 8: User’s Reference Guide. Illinois: Scientific Software International, Lincolnwood.
- Kim, D., Shin, J., & Lee, K. (2013). Exploring latent class based on growth rates in number sense ability. Asia Pacific Education Review, 14(3), 445-453, doi: 10.1007/s12564-013-9274-9
- Kline, R. B. (2005). Principles and practice of structural equation modeling (2ª ed.). Nueva York, NY: Guilford Press.
- Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95-103. doi: 10.1016/j.learninstruc.2012.12.001
- LeFevre, J., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuck, S. ... Smith-Chant, B. (2013). The role of executive attention in the acquisition of ma-thematical skills for children in grades 2 through 4. Journal of Experimental Child Psychology, 114(2), 243-261. doi: 10.1016/j.jecp.2012.10.005
- Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children’s executive functions and strategy selection: A study in computational estimation. Cognitive Development, 26, 282-294. doi: 10.1016/j.cogdev.2011.01.002
- Lembke, E., & Foegen, A. (2009). Identifying early numeracy indicators for kindergarten and first-grade students. Learning Disabilities Research & Practice, 24(1), 12-20. doi: 10.1111/j.1540-5826.2008.01273.x
- Libertus, M. E., Fiegenson, L., & Halberda, J. (2011). Preschool acuity of the approximate num-ber system correlates with school math ability. Developmental Science, 14(6), 1292-1300. doi: 10.1111/j.1467-7687.2011.01080.x
- Libertus, M. E., Fiegenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133. doi: 10.1016/j.lindif.2013.02.001
- Lucangeli, D., Tressoldi, P. E., Bendotti, M., Bonanomi, M., & Siegel, L. S. (2003). Effective strategies for mental and written arithmetic calculation from the third to the fifth grade. Educational Psychology, 23(5), 507-520. doi: 10.1080/0144341032000123769
- Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256-261. doi: 10.1016/j.cognition.2011.07.009
- Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. doi: 10.1111/desc.12152
- Namkung, J. M., & Fuchs, L. S. (2016). Cognitive predictors of calculations and number line estimation with whole numbers and fractions among at-risk students. Journal of Educational Psychology, 108(2), 214-228. doi: 10.1037/edu0000055
- National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: NCATE.
- National Mathematics Advisory Panel (2008). Foundations for Success: The Final Report of the National Mathematics Advisory Panel. Washington, DC: Department of Education.
- Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investi-gation of underlying mechanism. Cognition, 133(1), 188-200. doi: 10.1016/j.cognition.2014.06.011
- Peng, P., Namkung, J. M., Fuchs, D., Fuchs, L. S., Patton, S., Yen, L. ... Hamlett, C. (2016). A longitudinal study on predictors of early calculation development among young children at risk for learning difficulties. Journal of Experimental Child Psychology, 152, 221-241. doi: 10.1016/j.jecp.2016.07.017
- Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542-551. doi: 10.1016/j.tics.2010.09.008
- R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de http://www.R-project.org
- Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418-431. doi: 10.1016/j.jecp.2012.10.012
- Sayers, J., & Andrews, P. (2015). Foundational number sense: Summarising the development of an analyti-cal framework. En K. Krainer & N. Vondrová (Eds.), Ninth Congress of the European Society for Research in Mathematics Education (CERME9) (pp. 361-337). Praga: Charles University in Prague, Faculty of Education.
- Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J. ... De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), 1-16. doi: 10.1111/desc.12372
- Siegler, R., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. Advances in Child Development and Behavior, 33, 1-42. doi: 10.1016/S0065-2407(05)80003-5
- Sisco-Taylor, D., Fung, W., & Swanson, H. L. (2015). Do curriculum-based measures predict performance on word-problem-solving measures? Assessment for Effective Intervention, 40(3), 131-142. doi: 10.1177/1534508414556504
- Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Science, 110(45), 18116-18120. doi: 10.1073/pnas.1302751110
- Toll, S. W. M., Kroesbergen, E. H., & Van Luit, J. E. H. (2016). Visual working memory and number sense: Testing the double deficit hypothesis in mathematics. British Journal of Educational Psychology, 86(3), 429-445. doi: 10.1111/bjep.12116