Carbon neutrality of an island with 100% renewable energy production and forest as carbon sinks: El Hierro (Canary Islands) a pilot for Europe

  1. Cruz‐Pérez, Noelia 2
  2. Grūbe, Gunta 1
  3. Ruiz‐Peinado, Ricardo 3
  4. García‐Gil, Alejandro 4
  5. Santamarta, Juan C. 2
  1. 1 Institute of Electronics and Computer Science Riga Latvia
  2. 2 Departamento de Ingeniería Agraria y del Medio Natural Universidad de La Laguna (ULL) Tenerife Spain
  3. 3 Instituto de Ciencias Forestales (ICIFOR‐INIA), CSIC Madrid Spain
  4. 4 Geological Survey of Spain (IGME‐CSIC) Madrid Spain
Journal:
Soil Use and Management

ISSN: 0266-0032 1475-2743

Year of publication: 2024

Volume: 40

Issue: 2

Type: Article

DOI: 10.1111/SUM.13042 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Soil Use and Management

Sustainable development goals

Abstract

The island of El Hierro is the smallest and youngest island in the Canary archipelago. It has been recognized as a UNESCO Biosphere Reserve since 2000, and it has a population of approximately 10,000 inhabitants. The aim of this study was to determine the amount of CO2 emissions absorbed by the forest stands of the island of El Hierro and compare it to the emissions generated by the population. It is noteworthy that there is a hydro-wind energy production project on the island that has significantly minimized the emissions linked to energy production. In short, El Hierro's forest stands are capable of capturing 46,785 tons of CO2 annually, while emissions associated with electricity production and emissions linked to road mobility are below the island's carbon sequestration capacity since the Gorona del Viento renewable energy project was built. By working on investment in renewable energies to produce energy and changing mobility with the use of electric vehicles, a small island like El Hierro can adapt to ecological transition by the year 2040. This is a goal set by the government to drastically reduce emissions in the Canary Islands.

Bibliographic References

  • 10.4336/2017.pfb.37.91.1337
  • 10.1016/j.foreco.2006.09.024
  • 10.1126/science.1155121
  • 10.1016/j.jclepro.2019.05.248
  • 10.1007/s40899‐022‐00706‐0
  • 10.1002/ieam.4719
  • 10.1016/j.landusepol.2021.105302
  • 10.1111/2041‐210X.12575
  • Canarias G., (2022), Estrategia Canaria de Acción Climática, pp. 273
  • Heras B. P., (2022), Romanian Journal of European Affairs, 22, pp. 63
  • 10.1016/j.foreco.2020.118575
  • 10.5194/essd‐14‐1917‐2022
  • 10.3390/en11102812
  • Gobierno de Canarias. (2021).Anuario Energético de Canarias 2020(p.348).Gobierno de Canarias.https://www3.gobiernodecanarias.org/ceic/energia/oecan/files/Anuario_Energetico_de_Canarias_2020.pdf
  • Ibáñez J. J., (2002), El inventario Forestal Nacional. Elemento clave para la gestión forestal sostenible, pp. 66
  • IDAE, (2022), Guía de Vehículos Turismo de venta en España, con indicación de consumos y emisiones de CO2, pp. 381
  • 10.1109/JSTARS.2014.2304642
  • Ministerio para la Transición Ecológica y el Reto Demográfico. (2018).MFE de máxima actualidad.Comunidad autónoma de Canarias(Escala:1:25 000).https://www.miteco.gob.es/es/cartografia‐y‐sig/ide/descargas/biodiversidad/mfe_canarias.aspx
  • MITECO, (2020), Cuarto Inventario Forestal Nacional: Canarias, pp. 62
  • 10.1080/10106049.2016.1178814
  • Montero G. Ruiz‐Peinado R. &Muñoz M.(2005).Producción de Biomasa y Fijación de CO2 Por Los Bosques Españoles.https://www.researchgate.net/publication/235639682
  • 10.1016/j.ijhydene.2017.04.101
  • 10.24084/repqj17.353
  • 10.1016/j.jclepro.2022.133252
  • 10.1016/j.biombioe.2011.03.020
  • 10.1080/24749508.2020.1742510
  • 10.1073/pnas.1810512116
  • 10.1007/s40565‐016‐0243‐2
  • 10.1016/j.rser.2018.09.014
  • 10.5194/bg‐11‐6827‐2014
  • 10.5424/fs/2011201‐11643
  • 10.5424/fs/2112211‐02193
  • 10.1038/nature10386
  • 10.1038/s41558‐018‐0253‐3
  • 10.1016/j.rse.2011.10.009
  • 10.1007/s11252‐016‐0585‐6
  • 10.1111/gcb.15036
  • 10.3389/fenrg.2020.560849
  • 10.3390/su11154232
  • 10.3390/f12050550