La convolución generalizada y espacios de Hilbert para la transformación integral de Hankel

  1. María Isabel Marrero Rodríguez
Dirigée par:
  1. Jorge Juan Betancor Pérez Directeur

Université de défendre: Universidad de La Laguna

Année de défendre: 1992

Jury:
  1. Nacere Hayek Calil President
  2. José Manuel Méndez Pérez Secrétaire
  3. Angel Rodríguez Palacios Rapporteur
  4. Fernando Costal Pereira Rapporteur
  5. Manuel José González Ortiz Rapporteur
Département:
  1. Análisis Matemático

Type: Thèses

Résumé

Se desarrolla una teoría sistemática de la convolución para la transformación generalizada de Hankel. Se analizan las propiedades topológicas de los espacios H y B de funciones introducidas por Zemanian. Se caracterizan los multiplicadores de los espacios H y H', dual de H. Se estudia la convolución de Hirschman y Haimo para la transformación integral de Hankel y se define la convolución generalizada sobre los espacios H, B y susduales. Los operadores de convolución en H y H' son caracterizados. La transformación generalizada de Hankel relaciona los espacios de multiplicadores y de operadores de convolución. Se introduce una cadena de espacios de Hilbert para los cuales la transformación de Hankel es un automorfismo. como aplicación de la teoría desarrollada se resuelven problemas de Cauchy en los que aparecen el operador diferencial de Bessel