Characterization of a New Low Temperature Encapsulation Method with Ethylene-Vinyl Acetate under UV Irradiation for Perovskite Solar Cells

  1. Ocaña, Luis
  2. Montes, Carlos
  3. González-Pérez, Sara
  4. González-Díaz, Benjamín
  5. Llarena, Elena
Revista:
Applied Sciences

ISSN: 2076-3417

Año de publicación: 2022

Volumen: 12

Número: 10

Páginas: 5228

Tipo: Artículo

DOI: 10.3390/APP12105228 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Applied Sciences

Resumen

In this work, the performance of a new ethylene-vinyl acetate-based low temperature encapsulation method, conceived to protect perovskite samples from UV irradiation in ambient conditions, has been analyzed. To this purpose, perovskite samples consisting of a set of MAPbI3 (CH3NH3PbI3) films and MAPbI3 with an ETL layer were deposited over glass substrates by spin-coating techniques and encapsulated using the new method. The samples were subjected to an UV lamp or to full solar irradiation in ambient conditions, with a relative humidity of 60–80%. Microscope imaging, spectroscopic ellipsometry and Fourier-transform infrared spectroscopy (FTIR) techniques were applied to analyze the samples. The obtained results indicate UV energy is responsible for the degradation of the perovskite layer. Thus, the cut-UV characteristics of the EVA encapsulate acts as an efficient barrier, allowing the laminated samples to remain stable above 350 h under full solar irradiation compared with non-encapsulated samples. In addition, the FTIR results reveal perovskite degradation caused by UV light. To extend the study to encompass whole PSCs, simulations were carried out using the software SCAPS-1D, where the non-encapsulated devices present a short-circuit current reduction after exposure to UV irradiation, while the encapsulated ones maintained their efficiency.

Referencias bibliográficas

  • 10.1002/adfm.201808843
  • 10.1021/acs.chemrev.8b00336
  • 10.1039/c3ee44174a
  • 10.1016/j.nimb.2010.05.053
  • 10.1021/jacs.8b13594
  • 10.1117/1.JPE.9.040901
  • 10.1021/acsami.0c11770
  • 10.1002/adma.201901519
  • 10.1021/acsami.0c12044
  • 10.1021/acsami.0c10717
  • 10.1109/JPHOTOV.2016.2642639
  • 10.1039/C6EE02687G
  • 10.1021/acsaem.7b00069
  • 10.1021/acsami.7b07071
  • 10.1039/D0EE02175J
  • 10.1039/D1MA00352F
  • 10.3390/electronics10101145
  • 10.1002/aenm.202103128
  • 10.1016/j.jpowsour.2020.229313
  • 10.1021/acsami.7b17824
  • 10.1088/2515-7655/ab8774
  • 10.1021/nl500390f
  • 10.1016/j.matlet.2018.10.029
  • 10.1021/acsami.9b02434
  • 10.1126/sciadv.aao5616
  • 10.1002/aenm.201802139
  • 10.1063/1.4967840
  • 10.1016/j.optcom.2015.08.021
  • 10.1002/aenm.201701928
  • 10.1002/pip.2374
  • 10.1039/c4tc00707g
  • 10.1021/acsami.5b04490
  • 10.1126/science.aah4046
  • 10.1039/C7TA09178H
  • 10.1016/S0040-6090(99)00849-4
  • 10.1016/j.mtener.2017.09.016
  • 10.1039/C5TA00358J
  • 10.1016/j.solener.2016.09.038
  • 10.1039/C7EE02564E
  • 10.1039/C8SE00250A
  • 10.1098/rsos.170792
  • 10.1038/ncomms15684
  • 10.1021/am4007808
  • 10.1016/j.solmat.2013.03.033
  • 10.1016/j.solmat.2015.11.004
  • 10.1016/j.nanoen.2016.09.041
  • 10.1016/j.solener.2020.02.052
  • 10.1002/ejic.202100329
  • 10.1016/j.apsusc.2017.12.085
  • 10.1002/adfm.201202120
  • 10.1016/j.nanoen.2017.06.039
  • 10.1002/anie.201405334
  • 10.1039/C5EE02733K
  • 10.1021/jz501877h
  • 10.1021/nn506465n
  • 10.1002/pssb.19660150224
  • 10.1021/acs.jpclett.8b02892
  • 10.1038/ncomms11574
  • 10.1021/acs.jpclett.9b00613
  • 10.1038/srep38150
  • 10.1039/C9RA10960A
  • 10.1021/acsami.8b03024
  • 10.1016/j.isci.2020.101013
  • 10.1039/C4TA05635C
  • 10.1016/j.jallcom.2017.01.035
  • 10.1364/OME.7.002150
  • 10.1126/sciadv.aaw6619
  • 10.1038/s41598-021-85005-y
  • 10.1063/1.5087914
  • Slami, (2019), Int. J. Energy Environ., 3, pp. 17
  • 10.17485/ijst/2017/v11i10/110721
  • 10.1016/j.mssp.2018.10.003
  • 10.1155/2017/9846310