Anaerobic digestion of commercial PLA and PBAT biodegradable plastic bags: Potential biogas production and 1H NMR and ATR-FTIR assessed biodegradation

  1. Álvarez-Méndez, Sergio Joaquín
  2. Ramos-Suárez, Juan Luis
  3. Ritter, Axel
  4. Mata González, Javier
  5. Ángeles Camacho Pérez
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Heliyon

ISSN: 2405-8440

Año de publicación: 2023

Volumen: 9

Número: 6

Páginas: e16691

Tipo: Artículo

DOI: 10.1016/J.HELIYON.2023.E16691 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Heliyon

Resumen

Bioplastics aim to substitute conventional plastics in most applications, a critical one being the collection of organic wastes for composting or anaerobic degradation. The anaerobic biodegradability of six commercial bags composed of PBAT or PLA/PBAT blends and certified as compostable [1] was studied using 1H NMR and ATR-FTIR techniques. This study aims to elucidate if commercial bioplastic bags are biodegradable under conventional conditions found in anaerobic digestates. Results showed that all studied bags are hardly anaerobically biodegradable at mesophilic temperatures. The biogas yield resulting from the anaerobic digestion under laboratory conditions oscillated between 270.3 ± 45.5 L kgVS−1 for a trash bag composed of 26.64 ± 0.03%/73.36 ± 0.03% PLA/PBAT and 36.7 ± 25.0 L kgVS−1 for a bag composed of 21.24 ± 0.08%/78.76 ± 0.08% PLA/PBAT. The degree of biodegradation did not correlate with PLA/PBAT molar composition. However, 1H NMR characterization showed that the anaerobic biodegradation occurred mostly in the PLA fraction. No bioplastics biodegradation products were detected in the digestate fraction (<2 mm). Finally, none of the biodegraded bags comply with the EN 13432 standard.

Referencias bibliográficas

  • EN 13432. Requirements for Packaging Recoverable through Composting and Biodegradation. Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging.
  • Liu, (2022), Water Res., 221, 10.1016/j.watres.2022.118780
  • Weithmann, (2018), Sci. Adv., 4, 10.1126/sciadv.aap8060
  • Batori, (2018), Waste Manage. (Tucson, Ariz.), 80, pp. 406, 10.1016/j.wasman.2018.09.040
  • Meereboer, (2020), Green Chem., 22, pp. 5519, 10.1039/D0GC01647K
  • (2021)
  • Jian, (2020), Adv. Ind. Eng. Polym. Res., 3, pp. 19
  • Ranakoti, (2022), Materials, 15, pp. 4312, 10.3390/ma15124312
  • Su, (2020), Materials, 13, pp. 4897, 10.3390/ma13214897
  • Ludwiczak, (2021), Materials, 14, pp. 7189, 10.3390/ma14237189
  • Kale, (2007), Macromol. Biosci., 7, pp. 255, 10.1002/mabi.200600168
  • Siegenthaler, (2012), Adv. Polym. Sci., 245, pp. 91, 10.1007/12_2010_106
  • ASTM D6400-04. Standard Specification for Compostable Plastics.
  • ASTM D55511-12. Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials under High-Solids Anaerobic-Digestion Conditions. American society for testing and materials.
  • (2018), pp. 36
  • (2018), pp. 24
  • (2003), pp. 15
  • Battista, (2021), Environ. Technol. Innov., 22, 10.1016/j.eti.2021.101393
  • Zhang, (2018), Polym. Degrad. Stabil., 147, pp. 76, 10.1016/j.polymdegradstab.2017.11.005
  • Quecholac-Pina, (2020), Polymers, 12, pp. 109, 10.3390/polym12010109
  • Yagi, (2014), Polym. Degrad. Stabil., 110, pp. 278, 10.1016/j.polymdegradstab.2014.08.031
  • Zaborowska, (2021), Sustainability, 13, pp. 6818, 10.3390/su13126818
  • Garcia-Depraect, (2022), Bioresour. Technol., 344, 10.1016/j.biortech.2021.126265
  • Peng, (2022), Bioresour. Technol., 343, 10.1016/j.biortech.2021.126079
  • Ren, (2019), J. Polym. Environ., 27, pp. 2784, 10.1007/s10924-019-01563-3
  • Ruggero, (2019), Waste Manag. Res., 37, pp. 959, 10.1177/0734242X19854127
  • Musiol, (2018), Waste Manage. (Tucson, Ariz.), 77, pp. 447, 10.1016/j.wasman.2018.04.030
  • Musiol, (2022), Mater. Sci. Eng. B, 275, 10.1016/j.mseb.2021.115515
  • Sikorska, (2017), Polymers, 9, pp. 257, 10.3390/polym9070257
  • Hoshino, (2002), Soil Sci. Plant Nutr., 48, pp. 469, 10.1080/00380768.2002.10409228
  • Jia, (2021), J. Hazard Mater., 403, 10.1016/j.jhazmat.2020.123679
  • Massardier-Nageotte, (2006), Polym. Degrad. Stabil., 91, pp. 620, 10.1016/j.polymdegradstab.2005.02.029
  • (2006)
  • (1992), pp. 1816
  • Ripley, (1986), J. Water Pollut. Control Fed., 58, pp. 406
  • Yagi, (2009), Int. J. Mol. Sci., 10, pp. 3824, 10.3390/ijms10093824
  • Itaavaara, (2002), Chemosphere, 46, pp. 879, 10.1016/S0045-6535(01)00163-1
  • Kolstad, (2012), Polym. Degrad. Stabil., 97, pp. 1131, 10.1016/j.polymdegradstab.2012.04.003